\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial topological group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \emph{simplicial topological group} is a [[simplicial object]] in the [[category]] of [[topological groups]]. \end{defn} For various applications the ambient category [[Top]] of [[topological space]]s is taken specifically to be \begin{itemize}% \item the [[category]] of [[compactly generated space|compactly generated]] [[weakly Hausdorff space]]s, or \item or the category of [[k-space]]s. \end{itemize} We take [[Top]] to be the category of [[k-space]]s in the following. \begin{defn} \label{WellPointedSimplicialTopologicalGroup}\hypertarget{WellPointedSimplicialTopologicalGroup}{} A simplicial topological group $G$ is called \textbf{well-pointed} if for $*$ the trivial simplicial topological group and $i : * \to G$ the unique [[homomorphism]], all components $i_n : * \to G_n$ are [[closed cofibrations]]. \end{defn} For $B \in Top$ a fixed base object, it is often desirable to work in ``$B$-parameterized families'', hence in the [[over-category]] $Top/B$ (see \hyperlink{MaySigurdson}{MaySigurdson}). There is the [[Strøm model structure|relative Strøm model structure]] on $Top/B$. \begin{defn} \label{}\hypertarget{}{} A simplicial group in $G$ in $Top/B$ is called \textbf{well-sectioned} if for $B$ the trivial simplicial topological group over $B$ and $i : B \to G$ the unique [[homomorphism]], all components $i_n : B \to G_n$ are $\bar f$-cofibrations. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Recall for a [[discrete group|discrete]] [[simplicial group]] $G$ the notation $\bar W G \to W G$ for the [[Kan complex]] presentation of the [[universal principal infinity-bundle]] $\mathbf{E}G \to \mathbf{B}G$ from [[simplicial group]]. These constructions for discrete simplicial groups have immediate analogs for simplicial topological groups. \begin{defn} \label{}\hypertarget{}{} Let $G$ be a simplicial topological group. Write $\bar W G \in Top^{\Delta^{op}}$ for the [[simplicial topological space]] whose topological space of $n$-[[simplices]] is the [[product]] \begin{displaymath} \bar W G_n := G_{n-1} \times G_{n-2} \cdots \times G_{0} \end{displaymath} in [[Top]], equipped wwith the evident (\ldots{}) face and degeneracy maps. \end{defn} \begin{defn} \label{}\hypertarget{}{} We say a morphism $f : X \to Y$ of [[simplicial topological space]]s is a \textbf{global Kan fibration} if for all $n \in \mathbb{N}$ and $0 \leq k \leq n$ the canonical morphism \begin{displaymath} X_n \to Y_n \times_{sTop(\Lambda^n_k, Y)} sTop(\Lambda^n_k, X) \end{displaymath} in [[Top]] has a [[section]], where \begin{itemize}% \item $\Lambda^n_k \in$ [[sSet]] $\hookrightarrow Top^{\Delta^{op}}$ is the $k$th $n$-[[horn]] regarded as a [[discrete space|discrete]] [[simplicial topological space]]: \item $sTop(-,-) : sTop^{op} \times sTop \to Top$ is the [[Top]]-[[hom object]]. \end{itemize} We say a [[simplicial topological space]] $X_\bullet \in Top^{\Delta^{op}}$ is \textbf{(global) Kan simplicial space} if the unique morphism $X_\bullet \to *$ is a global Kan fibration, hence if for all $n \in \mathbb{N}$ and all $0 \leq i \leq n$ the canonical [[continuous function]] \begin{displaymath} X_n \to sTop(\Lambda^n_k, X) \end{displaymath} into the [[topological space]] of $k$th $n$-[[horn]]s admits a [[section]]. \end{defn} This global notion of Kan simplicial spaces is considered for instance in (\hyperlink{BrownSzczarba}{BrownSzczarba}) and (\hyperlink{May}{May}). \begin{prop} \label{}\hypertarget{}{} Let $G$ be a simplicial topological group. Then \begin{enumerate}% \item $G$ is a globally Kan simplicial topological space; \item $\bar W G$ is a globally Kan simplicial topological space; \item $W G \to \bar W G$ is a global Kan fibration. \end{enumerate} \end{prop} \begin{proof} The first statement appears as (\hyperlink{BrownSzczarba}{BrownSzczarba, theorem 3.8}), the second is noted in (\hyperlink{RobertsStevenson}{RobertsStevenson}), the third as (\hyperlink{BrownSzczarba}{BrownSzczarba, lemma 6.7}). \end{proof} \begin{prop} \label{}\hypertarget{}{} If $G$ is a \hyperlink{WellPointedSimplicialTopologicalGroup}{well-pointed} simplicial topological group, then \begin{enumerate}% \item $G$ is a [[nice simplicial topological space|good simplicial topological space]]; \item the [[geometric realization of simplicial topological spaces|geometric realization]] $|G|$ is well-pointed; \item $\bar W G$ is a [[nice simplicial topological space|proper simplicial topological space]]. \end{enumerate} \end{prop} \begin{proof} The statement about $\bar W G$ is proven in (\hyperlink{RobertsStevenson}{RobertsStevenson}). The other statements are referenced there. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial topological space]], [[nice simplicial topological space]] \item \textbf{simplicial topological group} \item [[geometric realization of simplicial topological spaces]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Basics theory of simplicial topological groups is in \begin{itemize}% \item E. H. Brown and R. H. Szczarba, \emph{Continuous cohomology and real homotopy type} , Trans. Amer. Math. Soc. 311 (1989), no. 1, 57 (\href{http://www.ams.org/journals/tran/1989-311-01/S0002-9947-1989-0929667-6/S0002-9947-1989-0929667-6.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item [[Peter May]], \emph{Geometry of iterated loop spaces} , SLNM 271, Springer-Verlag, 1972 (\href{http://www.math.uchicago.edu/~may/BOOKS/geom_iter.pdf}{pdf}) \end{itemize} Their [[principal ∞-bundle]]s and [[geometric realization of simplicial topological spaces|geometric realization]] is discussed in \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundles in parametrized spaces}, \href{http://arxiv.org/abs/1203.2460}{arXiv:1203.2460}. \end{itemize} Discussion of [[homotopy theory]] over a base $B$ is in \begin{itemize}% \item [[Peter May]], J. Sigurdsson, \emph{Parametrized homotopy theory} (\href{http://www.math.uiuc.edu/K-theory/0716/}{web}) \end{itemize} [[!redirects simplicial topological groups]] [[!redirects topological simplicial group]] [[!redirects topological simplicial groups]] [[!redirects well-pointed simplicial topological group]] [[!redirects well pointed simplicial topological group]] [[!redirects well-pointed simplicial topological groups]] [[!redirects well pointed simplicial topological groups]] [[!redirects well-sectioned simplicial topological group]] [[!redirects well sectioned simplicial topological group]] [[!redirects well-sectioned simplicial topological groups]] [[!redirects well sectioned simplicial topological groups]] \end{document}