\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicially enriched category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_models_for_categories}{As models for $(\infty,1)$-categories}\dotfill \pageref*{as_models_for_categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{simplicial_localization}{Simplicial localization}\dotfill \pageref*{simplicial_localization} \linebreak \noindent\hyperlink{model_structure}{Model structure}\dotfill \pageref*{model_structure} \linebreak \noindent\hyperlink{homotopy_kan_extension}{Homotopy Kan extension}\dotfill \pageref*{homotopy_kan_extension} \linebreak \noindent\hyperlink{presentation_of_topos_theory}{Presentation of $(\infty,1)$-topos theory}\dotfill \pageref*{presentation_of_topos_theory} \linebreak \noindent\hyperlink{as_models_for_categories_2}{As models for $(\infty,2)$-categories}\dotfill \pageref*{as_models_for_categories_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{simplicially enriched category} is a [[category]] with a [[simplicial set]] of [[morphism]]s between any two objects. One may think of the 1-cells in a hom-simplicial set as a [[2-morphism]], the 2-cells as a [[3-morphism]] and generally a $(k-1)$-cell as a [[k-morphism]]. Therefore simplicially enriched categories may serves as models for [[∞-categories]]. Precisely which notion of $\infty$-category depends on which extra [[stuff, structure, property|structure and property]] one imposes. For instance \begin{itemize}% \item requiring the hom-simplicial sets to be [[Kan complex]]es makes simplicially enriched categories a model for [[(∞,1)-categories]]; \item similary, equipping the $sSet$-enriched category with the structure of a $sSet_{Quillen}$-[[enriched model category]] -- a [[simplicial model category]] -- makes it a model for an $(\infty,1)$-category. This is discussed in more detail at [[relation between quasi-categories and simplicial categories]]. \item on the other hand, eqipping the $sSet$-enriched category with the structure of an $sSet_{Joyal}$-enriched model category over the Joyal-[[model structure for quasi-categories]] makes it a model for an [[(∞,2)-category]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} A \emph{simplicially enriched category} is a [[enriched category|category enriched over]] the [[cartesian monoidal category]] [[sSet]] of [[simplicial sets]]. \end{udefn} \begin{uremark} These $sSet$-enriched categories are sometimes, somewhat imprecisely, called just \emph{[[simplicial categories]]}. \end{uremark} There is a related notion of [[simplicial groupoid]] with the added requirement that all arrows in the categories concerned are [[isomorphisms]]. \hypertarget{as_models_for_categories}{}\subsection*{{As models for $(\infty,1)$-categories}}\label{as_models_for_categories} Since simplicial sets that are [[Kan complex]]es are an incarnation of [[∞-groupoid]]s, an $sSet$-category all whose [[hom-object]]s happen to be [[Kan complex]]es may be regarded as a category enriched in [[∞-groupoid]]s. By the logic of [[(n,r)-category]] theory this should be a model for an [[(∞,1)-category]]. Treating simplicial categories this way as models for $(\infty,1)$-categories is one of the central tools in [[homotopy coherent category theory]]. Indeed, there is a [[model structure on simplicial categories]] whose fibrant objects are [[Kan complex|Kan-complex]]-enriched categories, and which is one model for the [[(∞,1)-category of (∞,1)-categories]]. By a web of [[Quillen equivalence]]s this is related to the other incarnations of $(\infty,1)$-categories. Notably to [[quasi-categories]] and [[complete Segal space]]s. For more on this see \begin{itemize}% \item [[relation between quasi-categories and simplicial categories]]. \end{itemize} \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{simplicial_localization}{}\paragraph*{{Simplicial localization}}\label{simplicial_localization} To every [[category with weak equivalences]] $(C,W)$ is associated its [[simplicial localization]] $L_W C$, which is an $sSet$-category with the property that its [[homotopy category of an (∞,1)-category]] coincides with the [[homotopy category]] $Ho_W(C)$. \hypertarget{model_structure}{}\paragraph*{{Model structure}}\label{model_structure} There is a [[model structure on sSet-categories]] that presents the [[(∞,1)-category]] [[(∞,1)Cat]]. \hypertarget{homotopy_kan_extension}{}\paragraph*{{Homotopy Kan extension}}\label{homotopy_kan_extension} The notion of [[homotopy Kan extension]] and hence in particular that of [[homotopy limit]] and [[homotopy colimit]] has a direct formulation in terms of [[Kan complex|Kan-complex]]-enriched categories. See [[homotopy Kan extension]] for more. \hypertarget{presentation_of_topos_theory}{}\paragraph*{{Presentation of $(\infty,1)$-topos theory}}\label{presentation_of_topos_theory} All of [[(∞,1)-topos theory]] can be modeled in terms of $sSet$-categories. (\hyperlink{Toenvezzosie}{To\"e{}nVezzosi}). There is a notion of [[sSet-site]] $C$ that models the notion of [[(∞,1)-site]] and a [[model structure on sSet-enriched presheaves]] on $sSet$-sites that is a [[presentable (∞,1)-category|presentation]] for the [[∞-stack]] [[(∞,1)-topos]]es on $C$. \hypertarget{as_models_for_categories_2}{}\subsection*{{As models for $(\infty,2)$-categories}}\label{as_models_for_categories_2} See [[(∞,2)-category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial category]] \begin{itemize}% \item \textbf{simplicially enriched category} \item [[simplicial object in Cat]] \end{itemize} \item [[simplicial groupoid]] \item [[relation between quasi-categories and simplicial categories]] \item [[topologically enriched category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In the context of [[model category]] theory, simplicially enriched categories ([[simplicial model categories]]) appear in \begin{itemize}% \item [[Dan Quillen]], chapter II, section 1 of \emph{Homotopical algebra}, Lecture Notes in Mathematics \textbf{43}, Springer-Verlag 1967, iv+156 pp. \end{itemize} The original references on homotopy theory in terms of $sSet$-categories are \begin{itemize}% \item [[William Dwyer]], [[Dan Kan]], \emph{Simplicial localization of categories}, J. Pure and Appl. Algebra 17 (1980), 267-284. \item [[William Dwyer]], [[Dan Kan]], \emph{Equivalences between homotopy theories of diagrams} , in Algebraic topology and algebraic K-theory, Annals of Math. Studies 113, Princeton University Press, Princeton, 1987, 180-205. \end{itemize} Simplicially enriched categories as models for $(\infty,1)$-categories are discussed in some detail in section A.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} as well as in section 2 of \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Topos theory} (\href{http://arxiv.org/abs/math/0207028}{arXiv:0207028}) \end{itemize} Homotopy coherent category theory on $sSet$-categories is discussed in \begin{itemize}% \item [[Jean-Marc Cordier]], and [[Timothy Porter]], \emph{Homotopy coherent category theory} (\href{http://www.ams.org/journals/tran/1997-349-01/S0002-9947-97-01752-2/S0002-9947-97-01752-2.pdf}{pdf}) \end{itemize} which describes resolutions of the simplicial functor categories between two simplicial categories and \begin{itemize}% \item [[Michael Batanin]], \emph{Homotopy coherent category theory and $A_\infty$-structures in monoidal categories} (\href{http://dodo.pdmi.ras.ru/~topology/books/batanin.pdf}{pdf}) \end{itemize} which shows that these resolved functor categories are in fact $sSet$-[[A-∞ categories]]. [[!redirects simplicially enriched category]] [[!redirects simplicially enriched categories]] [[!redirects sSet-enriched category]] [[!redirects sSet-enriched categories]] [[!redirects SSet-enriched category]] [[!redirects SSet-enriched categories]] [[!redirects SimpSet-enriched category]] [[!redirects SimpSet-enriched categories]] [[!redirects sSet-category]] [[!redirects sSet-categories]] [[!redirects SSet-category]] [[!redirects SSet-categories]] [[!redirects SimpSet-category]] [[!redirects SimpSet-categories]] \end{document}