\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simulation} \hypertarget{simulations}{}\section*{{Simulations}}\label{simulations} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{relations}{Relations}\dotfill \pageref*{relations} \linebreak \noindent\hyperlink{open_maps_in_algebraic_set_theory}{Open maps in algebraic set theory}\dotfill \pageref*{open_maps_in_algebraic_set_theory} \linebreak \noindent\hyperlink{related_concepts}{Related Concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A simulation is a [[morphism]] of [[coalgebra for an endofunctor|coalgebras for an endofunctor]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[category]], and let $F\colon C \to C$ be an [[endofunctor]]. Recall that a [[coalgebra for an endofunctor|coalgebra]] of $F$ is an [[object]] $X$ of $C$ equipped with a [[morphism]] $\theta\colon X \to F(X)$. \begin{udefn} Given two coalgebras $X, X'$ of $F$, a \textbf{simulation} of $X$ in $X'$ is a morphism $s\colon X \to X'$ in $C$ such that $F(s) \circ \theta = \theta' \circ s$. That is, this [[commutative diagram|diagram commutes]]: \begin{displaymath} \array { X & \overset{\theta}\to & F(X) \\ \llap{s}\downarrow & & \downarrow\rlap{F(s)} \\ X' & \underset{\theta'}\to & F(X') } \end{displaymath} \end{udefn} The terminology comes from [[computer science]], and we should probably explain what it's about. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{relations}{}\subsubsection*{{Relations}}\label{relations} Consider the [[category of sets]] and the (covariant) [[power set]] functor $\mathcal{P}$. A coalgebra of $\mathcal{P}$ is a [[set]] $X$ equipped with a [[function]] $\theta\colon X \to \mathcal{P}(X)$, which is the same thing as a [[binary relation]] $\prec$ on $X$. To fix the notation, we write $a \prec b$ ($a$ \textbf{precedes} $b$) if $a \in \theta(b)$. Then in concrete terms, a simulation of $X$ in $X'$ is a function $s\colon X \to X'$ such that \begin{itemize}% \item $s(a) \prec' s(b)$ whenever $a \prec b$, and \item $t = s(a)$ for some $a \prec b$ whenever $t \prec' s(b)$. \end{itemize} Simulations are commonly used as morphisms between sets equipped with [[well founded relation|well-founded]] or [[extensional relation|extensional]] relations. In particular, between [[well-ordered sets]] (sets equipped with relations that are both well-founded and extensional, as well as [[transitive relation|transitive]]), a simulation (if it exists) is unique, and we recover the usual [[poset|ordered]] [[proper class|class]] of [[ordinal numbers]] as a [[thin category]]. \hypertarget{open_maps_in_algebraic_set_theory}{}\subsubsection*{{Open maps in algebraic set theory}}\label{open_maps_in_algebraic_set_theory} In their book \emph{Algebraic Set Theory}, Joyal and Moerdijk present the notion of a pretopos equipped with a class of open maps. As they remark, every presheaf category carries a canonical class of open maps. We reformulate their notion of canonical open map for an example of primary interest to them, the category of forests, in coalgebraic terms. The [[category of forests]] is by definition the [[presheaf|category of presheaves]] over the first infinite ordinal $\omega$. Concretely, a forest $F$ is a diagram of sets and functions \begin{displaymath} \ldots \to F_{n+1} \to F_n \to \ldots \to F_1 \to F_0. \end{displaymath} If $y \in F_{n+1}$ maps to $x \in F_n$, we call $y$ a \textbf{predecessor} of $x$. The successor map $s: \omega \to \omega$ induces a pullback functor \begin{displaymath} s^\ast = Set^{s^{op}}: Set^{\omega^{op}} \to Set^{\omega^{op}}. \end{displaymath} Let $P$ be the covariant power-object functor on the presheaf [[topos]]. Each forest $F$ carries a canonical coalgebra structure over the endofunctor $P s^\ast$. Namely, the structure is a presheaf map $\theta_F \to P s^\ast F$ that corresponds to the subobject \begin{displaymath} R \hookrightarrow F \times s^\ast F \end{displaymath} where the subset $R_n$ is the set of pairs $(x, y) \in F_n \times F_{n+1}$ such that $y$ is an immediate predecessor of $x$. If $\phi: F \to G$ is a map of forests, in other words if the functions $\phi_n: F_n \to G_n$ collectively preserve the predecessor relation, then we have an inclusion \begin{displaymath} \itexarray{ F & \stackrel{\phi}{\to} & G \\ ^\mathllap{\theta_F} \downarrow & \leq & \downarrow^\mathrlap{\theta_G} \\ P s^\ast F & \underset{P s^\ast \phi}{\to} & P s^\ast G } \end{displaymath} where $\leq$ comes from the internal poset structure of $P s^\ast G$. If this inclusion is an equality; in other words, if $\phi$ is a coalgebra map or simulation over $P s^\ast$, then we also say (following Joyal and Moerdijk) that $\phi$ is \emph{open}. Alternatively, we could say that $\phi$ is open if the maps $\phi_n$ collectively preserve and reflect the predecessor relation. Pursuing this more concretely: the composite $\theta_G \circ \phi$ corresponds to the subobject $S$ of $F \times s^\ast G$ occurring in the pullback \begin{displaymath} \itexarray{ S & \to & R_G \\ \downarrow & & \downarrow \\ F \times s^\ast G & \underset{\phi \times 1}{\to} & G \times s^\ast G } \end{displaymath} so that $S_n \subseteq F_n \times G_{n+1}$ consists of pairs $(x, y)$ such that $y$ is a predecessor of $\phi_n(x)$ in $G$. The composite $P s^\ast(\phi) \circ \theta_F$ corresponds to the subobject $S'$ of $F \times s^\ast G$ occurring in an image factorization \begin{displaymath} \itexarray{ R_F & \twoheadrightarrow & S' \\ \downarrow & & \downarrow \\ F \times s^\ast F & \underset{1 \times s^\ast \phi}{\to} & F \times s^\ast G } \end{displaymath} so that (taking advantage of the fact that image factorizations in a presheaf topos are computed objectwise) $S_{n}' \subseteq F_n \times G_{n+1}$ consists of pairs $(x', y')$ such that $y' = \phi_{n+1} y$ for some predecessor $y$ of $x$ in $F$. The equality of subobjects $S = S'$ matches the notion of open map given in \emph{Algebraic Set Theory}. \textbf{Remark:} Joyal and Moerdijk actually refine this idea as follows. Instead of taking forests to be set-valued presheaves, they take them to be presheaves over $\omega$ valued in a given [[pretopos]] $C$ equipped with a class of \emph{small maps} (which are defined axiomatically). Then, a \emph{small forest} is a diagram in $C$ of the form \begin{displaymath} \ldots \to F_{n+1} \to F_n \to \ldots \to F_1 \to F_0 \end{displaymath} where each map $F_{n+1} \to F_n$ and $F_0 \to 1$ is small. On the other hand, the small map axioms guarantee that small subobjects are representable by a functor $P_{small}: C \to C$. This induces a functor $P_{small}: C^{\omega^{op}} \to C^{\omega^{op}}$ on the category of forests, and analogous to what we described above, a small forest can be construed in terms of a coalgebra structure $F \to P_{small} (s^\ast F)$. \hypertarget{related_concepts}{}\subsection*{{Related Concepts}}\label{related_concepts} \begin{itemize}% \item [[bisimulation]] \end{itemize} [[!redirects simulation]] [[!redirects simulations]] \end{document}