\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{single-sorted definition of a category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{specializations}{Specializations}\dotfill \pageref*{specializations} \linebreak \noindent\hyperlink{internalization}{Internalization}\dotfill \pageref*{internalization} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are two common ways to define a [[category]]: \begin{enumerate}% \item As a [[collection]] $C_0$ of [[objects]] and a collection $C_1$ of [[morphisms]], together with [[source]] and [[target]] maps $C_1\to C_0$, a composition map $C_1\times_{C_0} C_1\to C_1$, and an [[identity assigning map]] $C_0\to C_1$, satisfying axioms. \item As a collection $C_0$ of objects, together with for each pair $x,y$ of objects, a collection $hom_C(x,y)$ of morphisms, together with identities $1_x\in hom_C(x,x)$ and composition maps $hom_C(y,z)\times hom_C(x,y)\to hom_C(x,z)$, satisfying axioms. \end{enumerate} In [[logic|logical]] terms, the first is formulated as a $2$-sorted theory in [[first-order logic]], while the second is a [[dependent type theory|dependently typed theory]]; the usual way of interpreting any dependently typed theory as an independently sorted theory turns the latter into the former. However, there is a third way of defining a category which uses only one collection (representing the collection of morphisms) and thus is formulated as an untyped (or $1$-sorted) first-order theory. Note that this is \emph{not} the usual way of replacing sorts with predicates, but instead a slightly clever trick. The basic idea is that an [[object]] can be identified with its [[identity morphism]]. This reformulation is occasionally useful, but mostly for technical reasons. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{category} (single-sorted version) is a [[collection]] $C$, whose elements are called \emph{morphisms}, together with two functions $s,t:C\to C$ and a [[partial function]] $\circ:C\times C\to C$, such that: \begin{enumerate}% \item $s(s(x)) = s(x) = t(s(x))$ \item $t(t(x)) = t(x) = s(t(x))$ \item $x\circ y$ is defined if and only if $s(x)=t(y)$. \item If $x\circ y$ is defined, then $s(x\circ y) = s(y)$ and $t(x\circ y)=t(x)$. \item $x\circ s(x)=x$ and $t(x)\circ x=x$ (both composites are always defined, because of the first two axioms) \item $(x\circ y)\circ z = x\circ (y\circ z)$, if either is defined (in which case the other is defined by the axiom 3). \end{enumerate} The first two axioms say that $s$ and $t$ are [[idempotent]] [[endofunctions]] on $C$ which have the same [[image]]. The elements of their common image (the $x$ such that $s(x)=x$, or equivalently $t(x)=x$) are called \emph{identities} or \emph{objects}. Once that is done, the rest of the identification is straightforward. A \textbf{[[functor]]} between single-sorted categories is just a function $f:C\to D$ such that $f(s(x)) = s(f(x))$, $f(t(x)) = t(f(x))$, and $f(x\circ y)= f(x)\circ f(y)$ whenever $x\circ y$ is defined (which, by the first two axioms of a functor and axiom (3) of a category, implies that $f(x)\circ f(y)$ is defined). Finally, a \textbf{[[natural transformation]]} between functors $f,g:C\to D$ of single-sorted categories is a function $\alpha:C\to D$ such that $s(\alpha(x)) = s(f(x))$, $t(\alpha(x)) = t(g(x))$, and $\alpha(x) \circ f(y) = g(x) \circ \alpha(y)$ whenever $x\circ y$ is defined (which implies that both composites in this identity are defined). Note that while a natural transformation is ordinarily defined to consist of a component $\alpha(x)$ only when $x$ is an \emph{object}, this definition supplies a component to each \emph{morphism}. In terms of the usual definition, the component of $\alpha$ at a morphism is the diagonal of the corresponding naturality square. It can now be proved that single-sorted categories, functors, and natural transformations form a $2$-[[2-category]] which is (strictly) [[equivalence of categories|equivalent]] to the usual $2$-category [[Cat]]. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \hypertarget{specializations}{}\subsubsection*{{Specializations}}\label{specializations} A [[monoid]] is a single-sorted category in which $s$ is a constant function (hence so is $t$, and they are equal). This works up to [[isomorphism of categories]], not merely equivalence, so single-sorted categories may seem to be a more direct [[oidification]] of monoids than the usual categories. \hypertarget{internalization}{}\subsubsection*{{Internalization}}\label{internalization} The usual definition of an [[internal category]] is two-sorted, but the one-sorted definition can also be interpreted [[internalization|internally]]. While the usual notion of internal category requires the [[ambient category]] only to have [[pullbacks]], the one-sorted version appears to require one to make sense of an ``internal partial binary operation.'' However, since in this case the domain of $\circ$ is specified explicitly in the definition, one can just require $\circ$ to be an ordinary morphism whose domain is the pullback of $s$ and $t$; thus only pullbacks are required for the single-sorted definition as well. It is easy to see that any internal two-sorted category gives an internal one-sorted category (consider the object of arrows). The converse is true as long as the ambient category has [[split idempotents]], for then given an internal one-sorted category we can split either $s$ or $t$ to obtain an object of objects. In general, however, the two concepts are not equivalent. \hypertarget{generalizations}{}\subsubsection*{{Generalizations}}\label{generalizations} There exist similar single-sorted definitions of $n$-[[n-categories|categories]] and [[∞-categories]]. The single sort in the definition of $n$-category is the set of $n$-morphisms, but you can also think of this as the union (over all $k \leq n$) of the sets of $k$-morphisms, as long as you identify each $k$-morphism (for $k \lt n$) with its identity $(k+1)$-morphism. In the the definition of $\infty$-category, there is no notion of $\infty$-morphism to take care of everything at once, but the single sort can still be understood as this union (now over all $k$). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \emph{[[Categories Work]]}, I.1 and XII.5. \end{itemize} [[!redirects single-sorted definition of category]] [[!redirects single-sorted definition of a category]] [[!redirects single-sorted definition of categories]] [[!redirects single-sorted definitions of category]] [[!redirects single-sorted definitions of a category]] [[!redirects single-sorted definitions of categories]] \end{document}