\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{morita_equivalent_sites}{Morita equivalent sites}\dotfill \pageref*{morita_equivalent_sites} \linebreak \noindent\hyperlink{subcanonical_sites}{Subcanonical sites}\dotfill \pageref*{subcanonical_sites} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{classes_of_sites}{Classes of sites}\dotfill \pageref*{classes_of_sites} \linebreak \noindent\hyperlink{specific_sites}{Specific sites}\dotfill \pageref*{specific_sites} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{site} is a [[locally presentable category|presentation]] of a [[sheaf topos]] as a structure [[free cocompletion|freely generated under colimits]] from a category, subject to the relation that certain [[covering]] colimits are preserved. As such, sites generalise [[topological spaces]] and [[locales]], which present [[localic topos|localic]] sheaf toposes. More precisely, sites generalise and [[categorify]] [[posites]], which present localic toposes but also present locales themselves in a decategorified manner. In technical terms, a \emph{site} is a [[small category]] equipped with a [[coverage]] or [[Grothendieck topology]]. The [[category of sheaves]] over a site is a [[sheaf topos]] and the site is a \emph{site of definition} for this topos. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{Site}\hypertarget{Site}{} A \emph{site} $(C,J)$ is a [[category]] $C$ equipped with a [[coverage]] $J$. For $\mathcal{E}$ a topos equipped with an [[equivalence of categories]] \begin{displaymath} \mathcal{E} \simeq Sh(C,J) \end{displaymath} to the [[sheaf topos]] over a site, one says that $(C,J)$ is a \textbf{site of definition} for $\mathcal{E}$. \end{defn} Some classes of sites have their special names \begin{defn} \label{TypesOfSites}\hypertarget{TypesOfSites}{} A site is called \begin{itemize}% \item a [[small site]], [[large site]], \emph{essentially small site} if the underlying category is a [[small category]], [[large category]], [[essentially small category]], respectively; \item a \textbf{[[cartesian site]]} if the underlying category is [[finitely complete category|finitely complete]] (which the [[Elephant]] calls a [[cartesian category]]); \item a \textbf{[[standard site]]} if it is a cartesian site equipped with a [[subcanonical coverage]]. \end{itemize} \end{defn} The term [[standard site]] appears in (\hyperlink{Johnstone}{Johnstone, example A2.1.11}). \begin{remark} \label{SmallAndLarge}\hypertarget{SmallAndLarge}{} Often a site is required to be a [[small category]]. But also [[large site]]s play a role. \end{remark} \begin{remark} \label{CoveragesAndTopologies}\hypertarget{CoveragesAndTopologies}{} Every [[coverage]] induces a [[Grothendieck topology]]. Often sites are defined to be categories equipped with a Grothendieck topology. Some constructions and properties are more elegantly handled with coverages, some with Grothendieck topologies. Notice that there are many equivalent ways to define a [[Grothendieck topology]], for instance in terms of a system of [[local isomorphisms]], or in terms of a system of [[dense monomorphisms]] in the [[category of presheaves]] $PSh(S)$. \end{remark} \begin{defn} \label{}\hypertarget{}{} For $(C,J)$ a site, we write $Sh_J(C)$ for the [[category of sheaves]] on $C$ with respect to the [[coverage]] $J$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{morita_equivalent_sites}{}\subsubsection*{{Morita equivalent sites}}\label{morita_equivalent_sites} Many inequivalent sites may have equivalent [[sheaf topos]]es. \begin{prop} \label{}\hypertarget{}{} Every [[sheaf topos]] has a \hyperlink{TypesOfSites}{standard site} of definition. \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, theorem C2.2.8 (iii)}). \begin{remark} \label{}\hypertarget{}{} By \href{classifying+topos#SheafToposesAreClassifyingForTheirTheoryOfLocalAlgegras}{this corollary} at \emph{[[classifying topos]]} this means that every sheaf topos is the [[classifying topos]] for some [[theory]] of [[local algebras]]. \end{remark} \hypertarget{subcanonical_sites}{}\subsubsection*{{Subcanonical sites}}\label{subcanonical_sites} \begin{prop} \label{CharacterizationOfSubcanonicalSites}\hypertarget{CharacterizationOfSubcanonicalSites}{} For $\mathcal{E}$ a [[sheaf topos]], the [[essentially small category|essentially small]] sites of definition $(\mathcal{C}, J)$ of $\mathcal{E}$ such that $J$ is a [[subcanonical coverage]] are precisely the [[full subcategories]] on [[generating families]] of objects equipped with the coverages induced from the [[canonical coverage]] of $\mathcal{E}$. \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, prop. C2.2.16}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{classes_of_sites}{}\subsubsection*{{Classes of sites}}\label{classes_of_sites} \begin{itemize}% \item Every [[frame]] is canonically a site, where $U$ is covered by $\{U_i\}$ precisely if it is their [[join]]. A subclass of examples is the [[category of open subsets]] of a [[topological space]]. This are examples of [[posite]]s/[[(0,1)-site]]. \item Various categories come with canonical structures of sites on them: \begin{itemize}% \item For every category $C$ there is its [[canonical coverage]]. \item On every [[regular category]] there is its [[regular coverage]]. \item On every [[coherent category]] there is its [[coherent coverage]]. \item Generalizing the previous two examples, on an [[∞-ary regular category]] there is a $\kappa$-canonical coverage. \end{itemize} If the category in question is the [[syntactic category]] of a [[theory]], the corresponding site is the [[syntactic site]]. \item For every site there is the corresponding [[double negation topology]] that forces the sheaf topos to a [[Boolean topos]]. \end{itemize} Other classes of sites are listed in the following. \begin{itemize}% \item [[big site]] \item [[dense sub-site]] \item [[large site]], [[essentially small site]] \item [[concrete site]] \item [[locally connected site]] / [[locally ∞-connected site]] \begin{itemize}% \item [[connected site]] / [[∞-connected site]] \item [[strongly connected site]] / [[strongly ∞-connected site]] \item [[totally connected site]] / [[totally ∞-connected site]] \end{itemize} \item [[local site]] / [[∞-local site]] \item [[cohesive site]], [[∞-cohesive site]] \item [[atomic site]] \end{itemize} \hypertarget{specific_sites}{}\subsubsection*{{Specific sites}}\label{specific_sites} \begin{itemize}% \item Sites for [[big topos]]es defining notions of [[higher geometry|geometry]] are: \begin{itemize}% \item The sites that define the [[higher geometry|geometry]] called [[differential geometry]] are [[CartSp]]${}_{smooth}$, [[SmoothMfd]], etc, equipped with the [[open cover]] [[coverage]]. Or more generally [[smooth loci]] etc. \item The sites that induce [[topological geometry]] are small versions of [[Top]] equipped with the [[open cover]] [[coverage]]. \item The sites that induce the [[higher geometry]] modeled on [[Euclidean topology]] are the large site of [[paracompact manifold]]s and its [[dense sub-site]] [[CartSp]]${}_{top}$. \end{itemize} \item The sites that define the [[higher geometry|geometry]] called [[algebraic geometry]] are site structures on categories of formal duals of [[commutative ring]]s or commutative [[associative algebra]]s \begin{itemize}% \item [[fpqc-site]] $\to$ [[fppf-site]] $\to$ [[syntomic site]] $\to$ [[étale site]] $\to$ [[Nisnevich site]] $\to$ [[Zariski site]] [[crystalline site]] \end{itemize} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[posite]] \item \textbf{site} \begin{itemize}% \item [[internal site]] \item [[∞-ary site]] \end{itemize} \item [[2-site]], [[(2,1)-site]] \item [[(∞,1)-site]] \begin{itemize}% \item [[model site]], [[simplicial site]] \end{itemize} \item [[morphism of sites]], [[covering lifting property]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Elephant|Sketches of an Elephant]]} \end{itemize} sites are discussed in section C2.1. [[!redirects sites]] [[!redirects 1-site]] [[!redirects (1,1)-site]] [[!redirects 1-sites]] [[!redirects (1,1)-sites]] \end{document}