\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{skeletal geometric morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Skeletal geometric morphisms} are those [[geometric morphisms]] that preserve [[double negation|double negation sheaves]] and therefore play a role in the descriptions of classes of toposes like e.g. [[Boolean topos|Boolean]] or [[De Morgan toposes]] in whose definitions the negation participates. The notion of a skeletal geometric morphism can be viewed as a weakening of the notion of [[open geometric morphism]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[geometric morphism]] $f : \mathcal{F} \to \mathcal{E}$ is called \emph{skeletal} if the following equivalent conditions hold: \begin{itemize}% \item $f$ restricts to a geometric morphism $Sh_{\neg\neg}(\mathcal{F}) \to Sh_{\neg\neg}(\mathcal{E})$ . \item The [[inverse image]] $f^\ast$ preserves $\neg\neg$-dense monomorphisms. \item For any subobject $A'\rightarrowtail A$ in $\mathcal{E}$: $\neg\neg f^\ast(A')=\neg f^\ast(\neg A')$ in $Sub_\mathcal{F}(f^\ast(A))$. \end{itemize} \hypertarget{example}{}\subsection*{{Example}}\label{example} \begin{itemize}% \item Inverse images of [[open geometric morphism|open geometric morphisms]] are [[Heyting functors]], hence commute with $\neg$ and, therefore, \emph{open geometric morphisms are skeletal}. In particular, geometric morphisms with [[Boolean topos|Boolean]] codomain are open (\hyperlink{J02}{Johnstone 2002, p.612}), hence skeletal. \item [[dense subtopos|Dense subtoposes]] $i:Sh_j(\mathcal{E})\hookrightarrow \mathcal{E}$ are precisely those subtoposes with $Sh_{\neg\neg}(Sh_j(\mathcal{E}))=Sh_{\neg\neg}(\mathcal{E})$ (cf. \href{dense+subtopos#negdense}{this proposition}) and, therefore, are skeletal. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The following two propositions concern skeletal [[geometric embedding|inclusions]] (cf. Johnstone (\hyperlink{J02}{2002, p.1007})): \begin{prop} \label{}\hypertarget{}{} An inclusion $i:Sh_j(\mathcal{E})\hookrightarrow \mathcal{E}$ is skeletal iff $ext(j)$ , the $j$-closure of $0\rightarrowtail 1$ , is a $\neg\neg$-closed [[subterminal object]] of $\mathcal{E}$. \end{prop} \textbf{Proof}: First, notice that in general for a topology $j$ a subterminal $U$ is $j$-closed iff it is a $j$-sheaf since $1$ is always a $j$-sheaf. Hence $0$ is $\neg\neg$-closed precisely when it is a $\neg\neg$-sheaf. Now assume $i$ skeletal. Since $ext(j)$ is a $\neg\neg$-sheaf in $Sh_j(\mathcal{E})$ and $i$ preserves them, it is also a $\neg\neg$-sheaf in $\mathcal{E}$. Conversely, assume $ext(j)$ is a $\neg\neg$-sheaf in $\mathcal{E}$. Since it is also a $j$-sheaf, it is contained in $Sh_j(\mathcal{E})\cap Sh_{\neg\neg}(\mathcal{E})$ but this coincides with $Sh_{\neg\neg}(Sh_j(\mathcal{E}))$ because as a subtopos of the Boolean $Sh_{\neg\neg}(\mathcal{E})$ the intersection $Sh_j(\mathcal{E})\cap Sh_{\neg\neg}(\mathcal{E})$ is Boolean and $Sh_j(\mathcal{E})\cap Sh_{\neg\neg}(\mathcal{E})$, since it contains $ext(j)$, is dense in $Sh_j(\mathcal{E})$ and there can be only one such dense Boolean subtopos. $\qed$ \begin{prop} \label{}\hypertarget{}{} The class $\Sigma$ of skeletal [[geometric embedding|inclusions]] is the smallest class $\Gamma$ of geometric morphisms such that: \begin{itemize}% \item $\Gamma$ contains [[open subtopos|open inclusions]] and, \item $\Gamma$ is closed under precomposition with [[dense subtopos|dense inclusions]]: from $g$ dense, $f\in\Gamma$ and $f,g$ composable, follows $fg\in\Gamma$. $\qed$ \end{itemize} \end{prop} The following exhibits the link between skeletal morphisms and Booleanness: \begin{prop} \label{Boolean_skeletal}\hypertarget{Boolean_skeletal}{} A topos $\mathcal{E}$ is Boolean iff all geometric morphisms $\mathcal{F}\to\mathcal{E}$ to $\mathcal{E}$ are skeletal. \end{prop} \textbf{Proof}: When $\mathcal{E}$ is Boolean it coincides with $Sh_{\neg\neg}(\mathcal{E})$ hence $\neg\neg$-sheaves of $\mathcal{F}$ trivially have to land there. Conversely, assume all $\mathcal{F}\to\mathcal{E}$ are skeletal. By [[Barr's theorem]], $\mathcal{E}$ receives a surjective $f:\mathcal{B}\to\mathcal{E}$ from a Boolean topos. $f$ being skeletal and surjective implies that $im(f)=\mathcal{E}$ is Boolean. $\qed$ A pullback characterisation of [[open geometric morphisms]] from Johnstone (\hyperlink{J06}{2006, cor. 4.9}): \begin{prop} \label{}\hypertarget{}{} A [[geometric morphism]] $f:\mathcal{F}\to\mathcal{E}$ is open iff the pullback of any [[bounded geometric morphism]] with codomain $\mathcal{E}$ is skeletal. $\qed$ \end{prop} \hypertarget{remark}{}\subsection*{{Remark}}\label{remark} Skeletal morphisms between [[frame|frames]] are studied in \hyperlink{Banaschewski_Pultr94}{Banaschewski-Pultr (1994},\hyperlink{Banaschewski_Pultr96}{1996}), called \emph{weakly open} there. The equivalent concept for topological spaces appears in \hyperlink{Mioduszewski_Rudolf69}{Mioduszewski-Rudolf (1969)}. It is possible to define an analogous concept of \emph{m-skeletal geometric morphism} using the [[De Morganization|De Morgan topology]] on a topos $\mathcal{E}$ instead of $\neg\neg$. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[open geometric morphism]] \item [[dominant geometric morphism]] \item [[proper geometric morphism]] \item [[double negation]] \item [[De Morganization]] \item [[De Morgan topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item B. Banaschewski, A. Pultr, \emph{Variants of openness} , Appl. Cat. Struc. \textbf{2} (1994) pp.1-21. \item B. Banaschewski, A. Pultr, \emph{Booleanization} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXVII} no.1 (1996) pp.41-60. (\href{http://numdam.mathdoc.fr/numdam-bin/fitem?id=CTGDC_1996__37_1_41_0}{numdam}) \item [[Peter Johnstone]], \emph{Factorization theorems for geometric morphisms II} , pp.216-233 in LNM \textbf{915} Springer Heidelberg 1982. \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol.II} , Oxford UP 2002. (section D4.6, pp.1006-1010) \item [[Peter Johnstone]], \emph{Complemented sublocales and open maps} , Annals of Pure and Applied Logic \textbf{137} (2006) pp.240--255. \item [[Peter Johnstone]], \emph{The Gleason Cover of a Realizability Topos} , TAC \textbf{28} no.32 (2013) pp.1139-1152. (\href{http://www.tac.mta.ca/tac/volumes/28/32/28-32abs.html}{abstract}) \item J. Mioduszewski, L. Rudolf, \emph{H-closed and extremally disconnected Hausdorff spaces} , Dissertationes Math. \textbf{66} 1969. (\href{http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.desklight-99c47193-1b38-4485-9b3f-62fc71f8f83b}{toc}) \end{itemize} [[!redirects skeletal geometric morphisms]] [[!redirects skeletal morphism]] \end{document}