\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smash product} \begin{quote}% This article is about smash products in [[topology]]/[[homotopy theory]]. For the notion of \emph{Hopf smash product} see at [[crossed product algebra]]. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForPointedSets}{For pointed sets}\dotfill \pageref*{ForPointedSets} \linebreak \noindent\hyperlink{ForGeneralPointedObjects}{For general pointed objects}\dotfill \pageref*{ForGeneralPointedObjects} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_pointed_topological_spaces}{Of pointed topological spaces}\dotfill \pageref*{of_pointed_topological_spaces} \linebreak \noindent\hyperlink{of_spectra}{Of spectra}\dotfill \pageref*{of_spectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{smash product} is the canonical [[tensor product]] of [[pointed objects]] in an ambient [[monoidal category]]. It is essentially given by taking the tensor product of the underlying objects and then identifying all pieces that contain the base point of either with a new basepoint. An archetypical special case is the smash product of [[pointed topological spaces]] and hence of pointed [[homotopy types]]. Under [[stabilization]] this induces the important [[smash product of spectra]] in [[stable homotopy theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ForPointedSets}{}\subsubsection*{{For pointed sets}}\label{ForPointedSets} \begin{defn} \label{}\hypertarget{}{} The \textbf{smash product} $A \wedge B$ of two [[pointed sets]] $A$ and $B$ is the [[quotient set]] of the [[cartesian product]] $A \times B$ where all points with the basepoint as a coordinate (the one from $A$ or the one from $B$) are identified. The subset that is `smashed' here can be identified with the [[wedge sum]] $A \vee B$, so the definition of the smash product can be summarised as follows: \begin{displaymath} A \wedge B = \frac{A \times B}{A \vee B} \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The smash product is the [[tensor product]] in the [[closed monoidal category]] of [[pointed sets]].\newline That is, it is characterized by the existence of [[natural isomorphisms]] \begin{displaymath} Fun_*(A \wedge B, C) \cong Fun_*(A, Fun_*(B, C)) \end{displaymath} where $Fun_*(A,B)$ is the set of basepoint-preserving [[functions]] from $A$ to $B$, itself made into a pointed set by taking as basepoint the [[constant function]] from all of $A$ to the basepoint in $B$. \end{prop} This is a special case of the general discussion \hyperlink{ForGeneralPointedObjects}{below}. \hypertarget{ForGeneralPointedObjects}{}\subsubsection*{{For general pointed objects}}\label{ForGeneralPointedObjects} Let $(\mathcal{C}, \otimes, 1_{\mathcal{C}})$ be a [[closed monoidal category|closed]] [[symmetric monoidal category]] with ([[finite limit|finite]]) [[limits]] and [[colimits]]. Write $\ast \in \mathcal{C}$ for the [[terminal object]] of $\mathcal{C}$. Write $\mathcal{C}^{\ast/}$ for the category of [[pointed objects]] in $\mathcal{C}$. \begin{defn} \label{GeneralSmashProduct}\hypertarget{GeneralSmashProduct}{} For $X,Y \in \mathcal{C}^{\ast/}$ two [[pointed objects]] in $\mathcal{C}$, their \emph{smash product} is given by the following [[pushout]] of [[pushouts]] and [[tensor products]] all formed in $\mathcal{C}$ \begin{displaymath} X \wedge Y \coloneqq \ast \underset{(X \otimes \ast)\coprod (Y \otimes \ast)}{\coprod} (X \otimes Y) \end{displaymath} regarded as a pointed object via the induced [[co-projection]] from $\ast$. \end{defn} In this generality this appears as (\hyperlink{ElmendorfMandell07}{Elmendorf-Mandell 07, construction 4.19}). \begin{prop} \label{}\hypertarget{}{} The smash product of def. \ref{GeneralSmashProduct} makes $\mathcal{C}^{\ast/}$ be a [[closed monoidal category|closed]] [[symmetric monoidal category]] with ([[finite limit|finite]]) [[limits]] and [[colimits]]. \end{prop} A proof appears as (\hyperlink{ElmendorfMandell07}{Elmendorf-Mandell 07, lemma 4.20}). For more of these details see at \emph{\href{pointed+object#ClosedMonoidalStructure}{Pointed object -- Closed and monoidal structure}}. For [[base change]] functoriality of these structures see at \emph{\href{Wirthmüller+context#PointedObjects}{Wirthm\"u{}ller context -- Examples -- On pointed objects}}. \begin{remark} \label{}\hypertarget{}{} The formula for the smash product in def. \ref{GeneralSmashProduct} can be considered in any [[category]] $\mathcal{C}$ with [[finite limits]] and [[colimits]], but unless $\mathcal{C}$ is closed symmetric monoidal, it will not have all these properties. If finite [[products]] in $C$ preserve finite colimits, then the smash product is [[associativity|associative]], and if $C$ is also [[cartesian closed category|cartesian closed]], then it makes the category of pointed objects in $C$ [[closed monoidal category|closed monoidal]]. However, if finite products in $C$ do not preserve finite colimits, the smash product can fail to be associative. \end{remark} \begin{example} \label{}\hypertarget{}{} Examples of closed symmetric monoidal categories $(\mathcal{C}, \otimes 1_{\mathcal{C}})$ include in particular [[toposes]] with their [[cartesian monoidal category|cartesian monoidal structure]]. For the topos $\mathcal{C} =$ [[Set]] the general discussion here reduces to that \hyperlink{ForPointedSets}{above}. \end{example} There is a general abstract way to obtain this smash product monoidal structure: \begin{prop} \label{}\hypertarget{}{} The category of [[pointed objects]] is the [[Eilenberg-Moore category]] of [[algebras over a monad]] for the ``[[maybe monad]]'', $X \mapsto X \coprod \ast$. This being a suitably [[monoidal monad]] it canonically induces a monoidal structure on its EM-category, and that is the smash product. \end{prop} For more on this see at \emph{\href{maybe+monad#EMCategoryAndRelationToPointedObjects}{maybe monad -- EM-Category and Relation to pointed objects}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_pointed_topological_spaces}{}\subsubsection*{{Of pointed topological spaces}}\label{of_pointed_topological_spaces} The most common case when $C$ is a category of [[topological spaces]]. In that case, the [[natural transformation|natural]] [[continuous function|map]] $A\wedge (B\wedge C)\to (A\wedge B)\wedge C$ is a [[homeomorphism]] provided $C$ is a [[locally compact Hausdorff space]]. Thus if both $A$ and $C$ are locally compact Hausdorff, then we have the [[associativity]] $A\wedge(B\wedge C)\cong (A\wedge B)\wedge C$. Associativity fails in general for the category [[Top]] of all topological spaces; however, it is satisfied for pointed objects in any [[convenient category of topological spaces]], since such a category is cartesian closed. In particular, the smash product is associative for pointed [[compactly generated spaces]]. \hypertarget{of_spectra}{}\subsubsection*{{Of spectra}}\label{of_spectra} See at \emph{[[symmetric smash product of spectra]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pointed object]] \item [[wedge sum]] \item [[pointed mapping space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} On the general definition of smash products via [[closed monoidal category]] structure on [[pointed objects]] \begin{itemize}% \item [[Anthony Elmendorf]], [[Michael Mandell]], \emph{Permutative categories, multicategories, and algebraic K-theory}, Algebraic \& Geometric Topology 9 (2009) 2391-2441 (\href{http://arxiv.org/abs/0710.0082}{arXiv:0710.0082}) \end{itemize} On commutativity of smashing with [[homotopy limits]]: \begin{itemize}% \item [[Wolfgang Lueck]], Holger Reich, Marco Varisco, \emph{Commuting homotopy limits and smash products}, K-Theory, 30 (2): 137--165, 2003 (\href{http://arxiv.org/abs/math/0302116}{arXiv:math/0302116}) \end{itemize} [[!redirects smash product]] [[!redirects smash products]] [[!redirects smash produc]] \end{document}