\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smooth Lorentzian space} \begin{quote}% \textbf{Under Construction} \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{lorentzian_manifold}{Lorentzian manifold}\dotfill \pageref*{lorentzian_manifold} \linebreak \noindent\hyperlink{causal_structure}{Causal structure}\dotfill \pageref*{causal_structure} \linebreak \noindent\hyperlink{notions_of_causality}{Notions of causality}\dotfill \pageref*{notions_of_causality} \linebreak \noindent\hyperlink{being_causal_means_being_a_poset}{Being causal means being a poset}\dotfill \pageref*{being_causal_means_being_a_poset} \linebreak \noindent\hyperlink{generalized_smooth_lorentzian_spaces}{Generalized smooth Lorentzian spaces}\dotfill \pageref*{generalized_smooth_lorentzian_spaces} \linebreak \noindent\hyperlink{construction_on_a_smooth_lorentzian_space}{Construction on a smooth Lorentzian space}\dotfill \pageref*{construction_on_a_smooth_lorentzian_space} \linebreak \noindent\hyperlink{causal_subsets}{Causal subsets}\dotfill \pageref*{causal_subsets} \linebreak \noindent\hyperlink{PathnCategory}{The path $(\infty,1)$-category of a Lorentzian space}\dotfill \pageref*{PathnCategory} \linebreak \noindent\hyperlink{prelude_the_path_2groupoid_of_an_orbifold}{Prelude: the path 2-groupoid of an orbifold}\dotfill \pageref*{prelude_the_path_2groupoid_of_an_orbifold} \linebreak \noindent\hyperlink{the_path_category_of_a_lorentzian_space_2}{The path $(2,1)$-category of a Lorentzian space}\dotfill \pageref*{the_path_category_of_a_lorentzian_space_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{lorentzian_manifold}{}\subsubsection*{{Lorentzian manifold}}\label{lorentzian_manifold} A \emph{Lorentzian manifold} $(X, \eta)$ of dimension $(d+1)$ is a [[smooth manifold]] equipped with a [[pseudo-Riemannian metric]] $\eta$ of signature $[+--\cdots -]$ (but note that the complementary choice $[-++\cdots +]$ is also used in the literature). This equips the [[tangent bundle|tangent space]] $T_x X$ at every point $x \in X$ canonically with the structure of a $(d+1)$-dimensional [[Minkowski space]]. Accordingly, tangent vectors $v \in T_x X$ of $X$ are called \emph{[[timelike]]} , \emph{[[lightlike]]} or \emph{[[spacelike]]} , if their norm-square $\mu_x(v,v)$ is positive, zero or negative, respectively. See also at \emph{[[causal structure]]}. \hypertarget{causal_structure}{}\subsubsection*{{Causal structure}}\label{causal_structure} A \textbf{time orientation} on a Lorentzian manifold $X$ is a smooth (or, depending on the author, continuous) [[vector field]] $\nu \in \Gamma(T X)$ such that at all points $x \in X$ the vector $\nu_x$ is timelike. In general, a Lorentzian manifold does not have globally defined timelike continuous vector fields. Sometimes only Lorentzian manifolds admitting a time orientation are also called [[spacetime]]s. Given a time orientation $\nu$, a vector $v \in T_x X$ is \textbf{future directed} if it is timelike or light-like and its inner product with the time orientation vector at that point is positive, $\mu_x(\nu,v_x) \gt 0$. Since $\nu$ itself is smooth, it follows that it is future directed with respect to itself at every point. A smooth curve in $X$, i.e. a smooth map $\gamma : [0,1] \to X$ is called a \textbf{timelike curve} or a \textbf{lightlike curve} or a \textbf{spacelike curve} or a \textbf{future-directed curve} precisely if all of its tangent vectors $(\gamma_* \partial_s) \in T_{\gamma(s)} X$ are. We say that a point $y \in X$ \textbf{lies in the future} of a point $x \in X$ if $y = x$ or if there exists a future-directed curve $\gamma : [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. Equivalently, in this case $x$ \textbf{lies in the past} of $y$. \hypertarget{notions_of_causality}{}\paragraph*{{Notions of causality}}\label{notions_of_causality} We say that $(X,\mu)$ has \textbf{closed timelike curves} (closed future-directed curves) if there exists a non-constant timelike (future-dierected) curve starting and ending at some point $x$. Spacetimes which do not contain closed timelike curves are called \textbf{chronological}, spacetimes which do not contain closed future directed (i.e. non-spacelike) curves are called \textbf{causal}. \begin{udef} Given a time orientated spacetime L, the \textbf{chronological future} $I^+(p)$ of a point $p \in L$ is the set of events that can be reached by a future directed timelike curve starting from p: \begin{displaymath} I^+(p) := \{ q \in L | \text{there exists a future directed timelike curve} \lambda(t) \text{with} \lambda(0) = p and \lambda(1)=q \} \end{displaymath} The \textbf{causal future} $J^+(p)$ of $p$ is defined in the same way with future directed timelike replaced by future directed causal aka non-spacelike. \end{udef} \begin{udef} A subset S of a time orientated spacetime L is said to be \textbf{achronal} if no two points in S can be connected by a future directed timelike curve, i.e. for all $p, q \in L$ we have $q \notin I^+(p)$. \end{udef} \begin{utheorem} \textbf{boundary of chronological future} Let L be a time orientated spacetime and $S \subset L$. Then the boundary of $I^+(S)$ is either empty or an achronal, three-dimensional, embedded, $C^0$-submanifold of L. \end{utheorem} This is theorem 8.1.3 in the book of Wald. Examples of non-chronological Lorentzian manifolds are the [[anti de Sitter space]] and the [[Kerr spacetime]]. While the former is more of a theoretical interest due to the maximality of the symmetry group, the latter is usually seen as a solution with relevance to actual \emph{physics}, despite the fact that causality does not hold everywhere. Note that the property of being chronological is not strong enough to enforce causality as understood in everyday life: Even if there are no \emph{closed} future-directed curves, there still may be e.g. nonclosed \emph{ergodic} future-directed curves (they come close to every point they already passed in the ``past''). An often used stronger condition that models the everyday notion of causality is that the manifold has to be [[globally hyperbolic manifold|globally hyperbolic]] (\href{http://en.wikipedia.org/wiki/Globally_hyperbolic}{Wikipedia}), which, as already mentioned, excludes certain solutions modelling e.g. black holes. \hypertarget{being_causal_means_being_a_poset}{}\paragraph*{{Being causal means being a poset}}\label{being_causal_means_being_a_poset} Precisely if the Lorentzian space is causal in that there are \emph{no} closed future-directed curves is the [[relation]] \begin{itemize}% \item $(x \leq y) \Leftrightarrow$ ``$y$ is in the future of $x$'' \end{itemize} a [[poset]], hence a [[category]] with at most a single morphism between any two objects: The [[object]]s of this category are the points of $X$. A [[morphism]] $x \to y$ is a pair of points $x \leq y$ with $y$ in the future of $x$. Composition of morphisms is transitivity of the relation. The identity morphism on $x$ is the reflexivity $x \leq x$. The \emph{anti-symmetry} $(x \leq y \leq x) \Rightarrow (x = y)$ is precisely the absence of closed future-directed curves in $X$. Conversely, from just knowing $X$ as a smooth manifold and knowing this [[poset]] structure on $X$, one can reeconstruct the \textbf{light cone structure} of $(X,\mu)$, i.e. the information about which tangent vectors are timelike, lightlike, etc. One can see \begin{quote}% (\ldots{}reference\ldots{}) \end{quote} that the pseudo-Riemannian metric $\mu$ may be reconstructed from the lightcone structure and the [[volume density]] that it induces. In this sense a Lorentzian manifold without future-directed curves is equivalently a smooth [[poset]] equipped with a smooth [[measure]] on its space of objects. \hypertarget{generalized_smooth_lorentzian_spaces}{}\subsubsection*{{Generalized smooth Lorentzian spaces}}\label{generalized_smooth_lorentzian_spaces} \ldots{} \begin{quote}% A \textbf{smooth Lorentzian space} is supposed to be like a Lorentzian manifold, but whose underlying space is not necesarily a smoth manifold, but a [[generalized smooth space]]. So this is ``something like'' a [[partial order|poset]] [[internal category|internal]] to a category of measure spaces, or a [[poset]]-valued 2-[[stack]] on something like [[CartSp]] or the like. \end{quote} \ldots{} \hypertarget{construction_on_a_smooth_lorentzian_space}{}\subsection*{{Construction on a smooth Lorentzian space}}\label{construction_on_a_smooth_lorentzian_space} \hypertarget{causal_subsets}{}\subsubsection*{{Causal subsets}}\label{causal_subsets} Let $(X,\mu,\nu)$ be a time-oriented Lorentzian space regarded as a smooth [[category]] that is a [[poset]]. A \textbf{causal subset} of a $X$ is one of its [[under-over category|under-over categories]] $x \downarrow X \downarrow y$ for a pair $x,y \in X$ of points in $X$. Its objects form the collection of all points $z \in X$ that are both in the future of $x$ as well as in the past of $y$. \hypertarget{PathnCategory}{}\subsubsection*{{The path $(\infty,1)$-category of a Lorentzian space}}\label{PathnCategory} To every [[Lie ∞-groupoid]] $X$ is associated its [[schreiber:path ∞-groupoid]] $\mathbf{\Pi}(X)$. But more generally, to a smooth [[(∞,1)-category]] is associated a \textbf{path $(\infty,1)$-category}. See [[fundamental (infinity,1)-category]]. A causal Lorentzian manifold may naturally be regarded as a smooth category (a smooth [[poset]]) and as such has a path [[(n,r)-category|(2,1)]]-category. Its invertible [[morphism]]s are smooth spacelike curves, and its non-invertible morphisms contain future-directed paths. This $(2,1)$-category plays the role of the [[path groupoid]] of a plain manifold and is akin to the path 2-groupoid of paths in an [[orbifold]], only that where the latter has all morphisms invertible, crucially in the path 2-groupoid of a Lorentzian space, there are non-invertible morphisms, reflecting the causal structure of that space. To put this construction into context, we therefore first recall the story for paths in an orbifold. \hypertarget{prelude_the_path_2groupoid_of_an_orbifold}{}\paragraph*{{Prelude: the path 2-groupoid of an orbifold}}\label{prelude_the_path_2groupoid_of_an_orbifold} To an ordinary [[smooth manifold]] or [[generalized smooth space]] $X$ is associated its [[fundamental groupoid]] $\Pi_1(X)$ and its smooth [[path groupoid]] $P_1(X)$: [[categories]] whose [[object]]s are the points of $X$ and whose [[morphism]]s are certain equivalence classes of smooth paths between these objects. This construction generalizes from paths in plain spaces, to paths in spaces that are themselves smooth groupoids: notably to [[orbifold]]s $X$. Given an orbifold $X$ with space of objects $X_0$ and space of morphisms $X_1$, paths in it form a smooth [[2-groupoid]] $P_1(X)$ which looks as follows: \begin{itemize}% \item objects of $P_1(X)$ are the points of $X_0$; \item the morphisms of $P_1(X)$ are formal composites of two types of morphisms \begin{enumerate}% \item the smooth paths $X_0$, i.e. the morphisms of $P_1(X_0)$; $\gamma : x \to y$ \item the original morphisms of $X$, i.e. the elements of $X_1$. Since the orbifold is locally given by a [[group]] $G$, we may think of these morphisms as being of the form $x \to g\cdot x$, connecting a point $x \in X_0$ to the point $g\cdot x$ that it is [[isomorphism|isomorphic]] to under the orbifold action. \end{enumerate} \item the [[2-morphism]]s of $P_1(X)$ are paths in $X_1$, i.e. morphisms of $P_1(X_1)$. These we may picture as \begin{displaymath} \itexarray{ x &\stackrel{\gamma}{\to}& y \\ \downarrow &\swArrow& \downarrow \\ g\cdot x &\underset{g\cdot \gamma}{\to}& g \cdot y } \,. \end{displaymath} This is a path $(\gamma, g\cdot \gamma)$ of pairs of points that are related under the orbifold action. \end{itemize} The path 2-groups $P_1(X)$ of the orbifold encodes the correct notion of trajectories in the orbifold: such a trajectory may proceed along smooth paths, and intermittently it may jump between the ``orbifold sectors''. Notably an [[automorphism]] in $P_1(X)$ on a point $x$ may be given by a smooth path $x \to g x$ that does not come back to $x$ but just to one of its mirror-images, composed with the jump-morphism $g x \to x$ back to $x$. Sometimes (notably in [[string theory]]) such loops are called \emph{twisted sectors} of loop configurations. A detailed description of the smooth [[2-groupoid]] of paths in a smooth 2-groupoid may be found in \href{http://arxiv.org/PS_cache/arxiv/pdf/0808/0808.1923v1.pdf#page=19}{section 2.1} of \begin{itemize}% \item U.S., [[Konrad Waldorf]], \emph{Connections on nonabelian gerbes and their holonomy} (\href{http://arxiv.org/abs/0808.1923}{arXiv:0808.1923}) \end{itemize} There the groupoid $X$ is taken to be a [[Cech nerve|Cech groupoid]], but the general mechanism of the construction does not depend on this. A fully general description of paths in (higher) smooth groupoids is also at [[schreiber:path ∞-groupoid]]. It is immediate how this construction generalizes when the smooth groupoid $X$ is replaced by a smooth category. This we turn to now. \hypertarget{the_path_category_of_a_lorentzian_space_2}{}\paragraph*{{The path $(2,1)$-category of a Lorentzian space}}\label{the_path_category_of_a_lorentzian_space_2} Now we discuss the same as above, where now $X = (X_1 \stackrel{\to}{\to} X_0)$ is not a smooth groupoid, but a smooth category, notably the smooth [[poset]] determined by a smooth Lorentzian space. So let $X$ be a smooth causal Lorentzian manifold, regarded as a [[poset]]. So $X_0$ is the underlying manifold and $X_1 \subset X_0 \times X_0$ is the collection of pairs of points with one in the future of the other. We equip this with the structure of a [[internal category|category internal]] to [[diffeological space]]s, hence with the structure of a category-valued [[presheaf]] on the [[site]] [[CartSp]], by declaring that a plot $\phi : U \to X_0$ of the space of objects is a \emph{spacelike} smooth map $U \to X_0$: the push-forward along $\phi$ of every tangent vector of $U \in CartSp$ yields a spacelike vector in $X_0$. Analogously, we declare a plot $\phi : U \to X_1$ to be a pair of plots into $X_0$ such that pointwise this assigns a point and one point in its future. From now on, by abuse of notation, by $X$ we shall mean this category internal to diffeological spaces, regarded as a category-valued presheaf on [[CartSp]]. Then the path $(2,1)$-category $P_1(X)$ is defined as follows: \begin{itemize}% \item its space of objects is again the diffeological space $X_0$; \item the elements of its space of morphisms are generated from \begin{itemize}% \item morphisms $\gamma : x \to y$ given by reparameterization or thin-hoimotopy classes of smooth spacelike curves $\gamma : [0,1] \to X_0$; \item morphisms of the form $x \to y$ for every $x \leq y$ in the causal structure of $X$. \end{itemize} There is an evident diffeology on this space (a quotient of a disjoint union of product diffeologies). This defines the diffeological space $(P_1(X))$. \item the elements of its space of 2-morphisms are generated from 2-morphisms \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{[\gamma_1]}} \\ x_1 && y_1 \\ \downarrow &\swArrow& \downarrow \\ x_2 && y_2 \\ & \searrow \nearrow_{\mathrlap{[\gamma_2]}} } \;\;\;\; \forall t \in [0,1] : \gamma_1(t) \leq \gamma_2(t) \end{displaymath} given from classes of smooth paths in $X_1$, i.e. from classes of paths of pairs of points, one in the future of the other. There is an evident diffeology and evident composition operations on this. Notice that the generating 2-cells are 2-isomorphisms, but that their source and target morphisms are not generally invertible. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pseudo-Riemannian manifold]] \begin{itemize}% \item [[Lorentzian manifold]] \begin{itemize}% \item [[Lorentzian geometry]] \item [[spacetime]] \end{itemize} \item [[globally hyperbolic Lorentzian manifold]] \end{itemize} \item [[conal manifold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Hendrik Lorentz]]. A classic reference for general relativity is \begin{itemize}% \item [[Robert Wald]], \emph{General Relativity} \end{itemize} A textbook dedicated to the classical [[differential geometry|diffential geometric]] aspects Lorentzian manifolds is \begin{itemize}% \item John K. Beem; Paul E. Ehrlich, ; Kevin L. Easley, \emph{Global Lorentzian geometry} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0846.53001&format=complete}{ZMATH entry}) \end{itemize} A classical influential text on the nature of Lorentzian space is \begin{itemize}% \item [[Roger Penrose]], [[Wolfgang Rindler]], \emph{Spinors and space time}, in 2 vols. Cambridge Univ. Press 1984/1988. \end{itemize} The relation between causality and [[poset]]-structure (see also [[causal set]]) is reviewed for instance in \begin{itemize}% \item Ettore Minguzzi, \emph{Time and Causality in General Relativity} , talk notes, Ponta Delgada, July 2009 (\href{http://fqxi.org/data/documents/Minguzzi%20%20Azores%20Talk.pdf}{pdf}) \end{itemize} More details are discussed in the context of [[domain theory]], see for instance \begin{itemize}% \item [[Keye Martin]] and [[Prakash Panangaden]], \end{itemize} Some vaguely related blog discussion is at \begin{itemize}% \item \item \end{itemize} \hypertarget{discussion}{}\subsection*{{Discussion}}\label{discussion} A previous version of this entry started the following discussion. \emph{[[Toby Bartels|Toby]] asked}: How does this relate to a (smooth) Lorentzian manifold? if at all. \emph{[[Eric Forgy|Eric]] says}: Good question. I took the statement from a comment Urs made [[Discrete Causal Spaces|here]]. I chose to use the word ``space'' instead of ``manifold'' simply because it seemed to fit into a theme here about [[generalized smooth space|generalized smooth ``spaces'']]. The definition definitely needs fleshing out, but its a start. \emph{[[Urs Schreiber|Urs]]}: The point is: there is a theorem \begin{itemize}% \item see \href{http://en.wikipedia.org/wiki/Causal_sets#cite_note-Malament-0}{Wikipedia: causal sets} \end{itemize} that says that a map between two Lorentzian manifolds which preserves the causal structure, i.e. which is a functor of the underlying posets, is automatically a conformal isometry. There is, I think, another related theorem which says that from just the lightcone structure of a Lorentzian manifold, one can reconstruct its Lorentzian metric up to a conformal rescaling. Both theorems suggest that a Lorentzian metric on a manifold is in a way equivalent to a pair consisting of a measure on the manifold and lightcone structure. The latter in turn can be encoded in a poset structure on the manifold. If true, it would seem to suggest that a good foundational model for relativistic physics \emph{might} be posets [[internal category|internal to]] [[Meas]]. Somebody should sort this out. \emph{[[Eric Forgy|Eric]] says}: I like this idea. The measure could be the Leinster measure, which would be neat. We discussed this before at the nCafe I think. \emph{[[Urs Schreiber|Urs]]}: Yes, exactly. There was the idea that, since many finite categories come with a \emph{canonical} measure on their space (set) of objects, maybe we somehow need to merge this idea of Leinster measure with the idea of modelling a Lorentzain spacetime by something like a poset. Playing around with this observation was the content of \href{http://golem.ph.utexas.edu/category/2007/03/canonical_measures_on_configur_1.html}{this} blog entry. But I am not sure if it works out\ldots{} [[!redirects smooth Lorentzian space]] [[!redirects smooth Lorentzian spaces]] [[!redirects Lorentzian manifold]] [[!redirects Lorentzian manifolds]] [[!redirects smooth Lorentzian manifold]] [[!redirects smooth Lorentzian manifolds]] [[!redirects Lorentzian space]] [[!redirects Lorentzian spaces]] [[!redirects Lorentzian spacetime]] [[!redirects Lorentzian spacetimes]] \end{document}