\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smooth algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivating_example}{Motivating example}\dotfill \pageref*{motivating_example} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{tensor_product}{Tensor product}\dotfill \pageref*{tensor_product} \linebreak \noindent\hyperlink{finitely_generated_rings}{Finitely generated $C^\infty$-rings}\dotfill \pageref*{finitely_generated_rings} \linebreak \noindent\hyperlink{internal_rings}{Internal $C^\infty$-rings}\dotfill \pageref*{internal_rings} \linebreak \noindent\hyperlink{local_algebra}{Local $C^\infty$-algebra}\dotfill \pageref*{local_algebra} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{functions_on_smooth_manifolds}{Functions on smooth manifolds}\dotfill \pageref*{functions_on_smooth_manifolds} \linebreak \noindent\hyperlink{weil_algebras_functions_on_small_infinitesimal_spaces}{Weil algebras: functions on small infinitesimal spaces}\dotfill \pageref*{weil_algebras_functions_on_small_infinitesimal_spaces} \linebreak \noindent\hyperlink{power_series}{Power series}\dotfill \pageref*{power_series} \linebreak \noindent\hyperlink{Germs}{Functions on germs of manifolds}\dotfill \pageref*{Germs} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{limits_and_colimits}{Limits and colimits}\dotfill \pageref*{limits_and_colimits} \linebreak \noindent\hyperlink{UnderlyingAlgebra}{The underlying ordinary algebra}\dotfill \pageref*{UnderlyingAlgebra} \linebreak \noindent\hyperlink{finitely_presented_rings}{Finitely presented $C^\infty$-rings}\dotfill \pageref*{finitely_presented_rings} \linebreak \noindent\hyperlink{points_of_smooth_loci}{Points of smooth loci}\dotfill \pageref*{points_of_smooth_loci} \linebreak \noindent\hyperlink{SmoothFunctionAlgebrasOnSmoothManifolds}{Smooth function algebras on smooth manifolds}\dotfill \pageref*{SmoothFunctionAlgebrasOnSmoothManifolds} \linebreak \noindent\hyperlink{deformation_theory_of_smooth_algebras}{Deformation theory of smooth algebras}\dotfill \pageref*{deformation_theory_of_smooth_algebras} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{smooth algebra} or \textbf{$C^\infty$-ring} is an [[algebra]] $A$ over the reals $\mathbb{R}$ for which not only the product operation $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ lifts to the algebra product $A \times A \to A$, but for which \emph{every smooth map} $f : \mathbb{R}^n \to \mathbb{R}^m$ ([[morphism]] in [[Diff]]) lifts to a map $A(f) : A^n \to A^m$ in a compatible way. In short this means that $A$ is \begin{itemize}% \item a [[product]]-preserving [[presheaf|co-presheaf]] on [[CartSp]]; \item equivalently: an algebra for the [[Lawvere theory]] [[CartSp]]; \end{itemize} The smoothness of such $C^\infty$-rings is witnessed by the fact that this Lawvere theory is even a [[Fermat theory]]. The [[opposite category]] of the [[category]] of $C^\infty$-rings is the category of [[smooth loci]]. This and its subcategories play a major role as [[site]]s for [[category of sheaves|categories of sheaves]] that serve as [[Models for Smooth Infinitesimal Analysis|models]] for [[synthetic differential geometry]]. \hypertarget{motivating_example}{}\subsection*{{Motivating example}}\label{motivating_example} For $X$ a [[smooth manifold]], the assignment \begin{displaymath} \mathbb{R}^n \mapsto C^\infty(X,\mathbb{R}^n) = Hom_{Diff}(X,\mathbb{R}^n) \end{displaymath} of the [[set]] of smooth $\mathbb{R}^n$-valued functions on $X$ is clearly covariant and hence yields a co-presheaf on [[CartSp]] $\subset$ [[Diff]]: a [[functor]] \begin{displaymath} C^\infty(X,-) : CartSp \to Set \,. \end{displaymath} Since the [[hom-functor]] sends [[limit]]s to [[limit]]s in its second argument this is clearly [[product]] preserving. \begin{displaymath} C^\infty(X, \mathbb{R}^n \times \mathbb{R}^m) \simeq C^\infty(X,\mathbb{R}^n) \times C^\infty(X, \mathbb{R}^m) \end{displaymath} If as usual we write $C^\infty(X) := C^\infty(X,\mathbb{R})$ for the set of just $\mathbb{R}$-valued smooth functions, then the usual pointwise product of functions \begin{displaymath} \cdot : C^\infty(X) \times C^\infty(X) \to C^\infty(X) \end{displaymath} can be regarded as the image of our co-presheaf under the muliplication map $\mathbb{R} \times \mathbb{R} \stackrel{-\cdot -}{\to} \mathbb{R}$ on the algebra of real numbers: \begin{displaymath} \cdot : C^\infty(X) \times C^\infty(X) := C^\infty(X,\mathbb{R}) \times C^\infty(X,\mathbb{R}) \simeq C^\infty(X,\mathbb{R}\times \mathbb{R}) \stackrel{C^\infty(X,-\cdot-)}{\to} C^\infty(X,\mathbb{R}) =: C^\infty(X) \,. \end{displaymath} \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} [[CartSp]] is the full subcategory of [[Diff]] on manifolds of the form $\mathbb{R}^n$. \end{defn} \begin{defn} \label{}\hypertarget{}{} A $C^\infty$-algebra is a finite [[product]]-preserving [[presheaf|co-presheaf]] on [[CartSp]], i.e. a finite [[product]] preserving [[functor]] \begin{displaymath} A : CartSp \to Set \,. \end{displaymath} The category of such functors and [[natural transformation]]s between them we denote by $C^\infty Alg$. \end{defn} \begin{remark} \label{}\hypertarget{}{} The standard name in the literature for generalized smooth algebras is \textbf{$C^\infty$-rings}. Even though standard, this has the disadvantages for us that it collides badly with the use of $\infty$- for [[higher category theory|higher categorical]] structures. \end{remark} \hypertarget{tensor_product}{}\subsubsection*{{Tensor product}}\label{tensor_product} \begin{defn} \label{}\hypertarget{}{} The [[coproduct]] in $C^\infty Alg$ we call the \textbf{smooth tensor product} \begin{displaymath} \otimes_\infty : C^\infty Alg \times C^\infty Alg \to C^\infty Alg \,. \end{displaymath} More generally, for $i : C \to A$ and $j : C \to B$ two morphisms in $C^\infty Alg$, we call the [[pushout]] \begin{displaymath} \itexarray{ C &\stackrel{i}{\to}& A \\ \downarrow && \downarrow \\ B &\stackrel{j}{\to}& A \otimes_C B } \end{displaymath} the \textbf{smooth tensor product over $C$} of $A$ and $B$. \end{defn} \hypertarget{finitely_generated_rings}{}\subsubsection*{{Finitely generated $C^\infty$-rings}}\label{finitely_generated_rings} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[smooth manifold]], the smooth algebra $C^\infty(X)$ is the functor \begin{displaymath} C^\infty(X) := Hom_{Diff}(X,-) \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} \textbf{(finitely generated and finitely presented $C^\infty$-rings)} For $R$ a $C^\infty$-ring, and $I \in U(R)$ an ideal in the underlying ordinary ring, there is a canonical $C^\infty$-ring structure $R/I$ on the ordinary quotient ring $U(R)/I$. A $C^\infty$-ring $R$ is called \textbf{finitely generated} if it is of the form $C^\infty(\mathbb{R}^n)/I$ for $n \in \mathbb{N}$ and $I$ an ideal in $U(C^\infty(\mathbb{R}^n))$. It is \textbf{finitely presented} if also $I$ is finitely generated, as an ideal, $I = (i_1, \cdots, i_k)$ with $i_j \in U(R)$. This is equivalent to $R$ being a [[pushout]] of the form \begin{displaymath} \itexarray{ C^\infty(\mathbb{R}^k) &\to& C^{\infty}(*) \simeq \mathbb{R} \\ \downarrow && \downarrow \\ C^\infty(\mathbb{R}^n) &\to& R } \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} \textbf{(germ-determined finitely generated / fair )} For $p \in \mathbb{R}^n$ let \begin{displaymath} \pi_p : C^\infty(\mathbb{R}^n) \to C^\infty_p(\mathbb{R}^n) \end{displaymath} be the natural projection onto the \hyperlink{Germs}{smooth algebra of germs} of functions at $p$. A $C^\infty$-ring $C$ is called \textbf{fair} or \textbf{finitely generated and germ-determined} if it is finitely generated $C \simeq C^\infty(\mathbb{R}^n)/I$ and the ideal $I$ has the property that $f \in C^\infty(\mathbb{R}^n)$ is an element of $I$ if (and hence precisely if) for all $p \in \mathbb{R}^n$ the germ $\pi_p(f) \in C^\infty_p(\mathbb{R})^n$ is in the germ $\pi_p(I)$ of the ideal. \end{defn} \hypertarget{internal_rings}{}\subsubsection*{{Internal $C^\infty$-rings}}\label{internal_rings} For any [[smooth topos]] $(\mathcal{T}, R)$, there is an [[internalization|internal]] notion of [[generalized smooth algebra]]: \begin{defn} \label{}\hypertarget{}{} For $(\mathcal{T}, R)$ a [[topos]] equipped with an [[internalization|internal]] [[ring]] object $R$ (possibly but not necessarily a [[smooth topos]]), let $CartSp(\mathcal{T},R)$ be the full [[subcategory]] of $\mathcal{T}$ on objects of the form $R^n$ for $n \in \mathbb{N}$. Then a \textbf{$(\mathcal{T},R)$-algebra} is a product-preserving functor $A : CartSp(\mathcal{T}, R) \to Set$. \end{defn} All constructions on smooth algebras generalize to $(\mathcal{T},R)$-algebras. In particular for $X \in \mathcal{T}$ any object we have the function $(\mathcal{T},R)$-algebra \begin{displaymath} C(X) : R^n \mapsto \mathcal{T}(X,R^n) \,. \end{displaymath} The following remark asserts that when $\mathcal{T}$ is itself a sufficiently nice [[category of sheaves]] on formal duals of $(Set,\mathbb{R})$-algebras, then the internal notion of smooth function algebras on formal duals of external smooth algebras reproduces these external smooth algebras. \begin{prop} \label{}\hypertarget{}{} Let $A$ be a finitely generated $C^\infty$-ring, $\ell A$ its incarnation as an object in $\mathbb{L} = (C^\infty Ring^{fin})^{op}$ and $Y\ell A$ its incarnation in $Sh(\mathbb{L}) \subset PSh(\mathbb{L})$, with $Y$ the [[Yoneda embedding]] and using the assumption that the [[Grothendieck topology]] used to form $Sh(\mathbb{L})$ is [[subcanonical coverage|subcanonical]]. Also suppose that the line object $R$ is [[representable functor|represented]] by $\ell C^\infty(\mathbb{R})$ Then we have for all $A \in C^\infty Ring^{fin}$ that \begin{displaymath} C(Y\ell A) : R^n \mapsto A({*})^n \end{displaymath} \end{prop} \begin{proof} This is a straightforward manipulation: \begin{displaymath} \begin{aligned} Sh_{\mathbb{L}}(Y(\ell A), R^n) & = Sh_{\mathbb{L}}(Y(\ell A), Y(\ell C^\infty(\mathbb{R}^n))) \\ & = PSh_{\mathbb{L}}(Y(\ell A), Y(\ell C^\infty(\mathbb{R}^n))) \\ & \simeq \mathbb{L}(\ell A, \ell C^\infty(\mathbb{R}^n)) \\ & \simeq C^\infty Ring^{fin}(C^\infty(\mathbb{R}^n), A) \\ & \simeq A({*})^n \end{aligned} \end{displaymath} Here \begin{enumerate}% \item the first step expresses the nature of the line object in the models under consideration \item the second step expresses that the embedding $Sh(\mathbb{L}) \to PSh(\mathbb{L})$ is a [[full and faithful functor]] \item the third step expresses that the [[Yoneda embedding]] is a [[full and faithful functor]] \item the fourth step is the definition of $\mathbb{L}$ as the [[opposite category]] of $C^\infty Ring^{fin}$ \item the fifth step expresses that $C^\infty(R^n)$ is the free [[generalized smooth algebra]] on $n$ generators ([[Models for Smooth Infinitesimal Analysis|MSIA, chaper I, prop 1.1]]) \end{enumerate} \end{proof} \hypertarget{local_algebra}{}\subsubsection*{{Local $C^\infty$-algebra}}\label{local_algebra} The category [[CartSp]] carries a natural [[Grothendieck topology]]. A smooth algebra \begin{displaymath} A : CartSp \to Set \end{displaymath} is a [[locally algebra-ed topos|local algebra]] if $A$ sends [[covering]] families to epimorphism families: for each covering $\{U_i \to U\}$ the morphism \begin{displaymath} \coprod_i A(U_i) \to A(U) \end{displaymath} is an [[epimorphism]]. \begin{prop} \label{}\hypertarget{}{} Local smooth algebras are precisely the ``local Archimedian'' algebras (\ldots{}). \end{prop} This is (\hyperlink{BungeDubuc}{Bunge-Dubuc, prop. 2.1}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{functions_on_smooth_manifolds}{}\subsubsection*{{Functions on smooth manifolds}}\label{functions_on_smooth_manifolds} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[smooth manifold]], the smooth algebra $C^\infty(X)$ is the functor \begin{displaymath} C^\infty(X) := Hom_{Diff}(X,-) \end{displaymath} \end{defn} \hypertarget{weil_algebras_functions_on_small_infinitesimal_spaces}{}\subsubsection*{{Weil algebras: functions on small infinitesimal spaces}}\label{weil_algebras_functions_on_small_infinitesimal_spaces} A \emph{Weil algebra} in this context is a finite-dimensional commutative $\mathbb{R}$-algebra $W$ with a maximal ideal $I$ such that $W/I \simeq \mathbb{R}$ and $I^n = 0$ for some $n \in \mathbb{N}$. \begin{prop} \label{}\hypertarget{}{} There is a unique $C^\infty$-ring structure on a Weil algebra $W$. It makes $W$ a finitely presented $C^\infty$-ring. \end{prop} \begin{remark} \label{}\hypertarget{}{} The [[smooth loci]] corresponding to Weil algebras are [[infinitesimal space]]s. Weil algebras play a crucial role in the definition of [[smooth topos]]es. \end{remark} \hypertarget{power_series}{}\subsubsection*{{Power series}}\label{power_series} \ldots{} \hypertarget{Germs}{}\subsubsection*{{Functions on germs of manifolds}}\label{Germs} For $p \in \mathbb{R}^n$, the algebra of [[germ]]s of smooth $\mathbb{R}$-valued functions at $p$ carries an evident $C^\infty$-ring structure $C^\infty(\mathbb{R}^n)_p$. With $I_p \subset C^\infty(\mathbb{R}^n)$ the ideal of functions that vanish on a neighbourhood of $p$ we have \begin{displaymath} C^\infty_p(\mathbb{R}^n) \simeq C^\infty(\mathbb{R}^n)/I_p \,, \end{displaymath} yielding a finitely generated but not (for $n \gt 0$) finitely presented $C^\infty$-ring. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{limits_and_colimits}{}\subsubsection*{{Limits and colimits}}\label{limits_and_colimits} \begin{prop} \label{}\hypertarget{}{} All [[limit]]s and all [[directed colimit]]s in $C^\infty Ring$ are computed objectwise in $[CartSp,Set]$ as limits in [[Set]]. \end{prop} \begin{proof} As discussed at [[limits and colimits by example]], all [[limit]]s and [[colimit]]s in $[CartSp,Set]$ are computed objectwise, so the remaining question is if they preserve the property of functors $CartSp \to Set$ to preserved products. The claim follows from the observation that [[limit]]s and [[directed colimit]]s do commute with products. \end{proof} See also [[Models for Smooth Infinitesimal Analysis|MSIA, p. 22]]. \hypertarget{UnderlyingAlgebra}{}\subsubsection*{{The underlying ordinary algebra}}\label{UnderlyingAlgebra} There is a [[stuff, structure, property|forgetful functor]] \begin{displaymath} U : C^\infty Alg \to Alg \end{displaymath} from generalized smooth algebras to ordinary algebras which is given by evaluation on $\mathbb{R}$ \begin{displaymath} U : A \mapsto A(\mathbb{R}) \end{displaymath} and equipping the set $A(\mathbb{R})$ with the algebra structure induced on it: the product and sum on $A(\mathbb{R})$ is the image of the corresponding operations on the algebra $\mathbb{R}$ \begin{displaymath} \cdot_A : A(\mathbb{R}) \times A(\mathbb{R}) \stackrel{\simeq}{\to} A(\mathbb{R}\times \mathbb{R}) \stackrel{A(\cdot)}{\to} A(\mathbb{R}) \,. \end{displaymath} \begin{displaymath} +_A : A(\mathbb{R}) \times A(\mathbb{R}) \stackrel{\simeq}{\to} A(\mathbb{R} + \mathbb{R}) \stackrel{A(\cdot)}{\to} A(\mathbb{R}) \,. \end{displaymath} Moreover there is canonically a morphism of rings \begin{displaymath} \mathbb{R} \to A(\mathbb{R}) \end{displaymath} given by \begin{displaymath} (* = \mathbb{R}^0 \stackrel{c}{\to} \mathbb{R}) \mapsto (* = A(\mathbb{R}^0) \stackrel{A(c)}{\to} A(\mathbb{R})) \,. \end{displaymath} This makes $A(\mathbb{R})$ an $\mathbb{R}$-algebra. \begin{prop} \label{}\hypertarget{}{} The [[forgetful functor]] $U$ fits into an [[adjunction]] \begin{displaymath} (F \dashv U) : C^\infty Alg_{\mathbb{R}} \stackrel{\overset{F}{\leftarrow}}{\underset{U}{\to}} Alg_{\mathbb{R}} \,. \end{displaymath} \end{prop} \begin{proof} This statement may be understood as a special case of the following more general statement: \begin{itemize}% \item If $S$, $T$ are [[finitary monad]]s and $f: S \to T$ is a monad morphism, then the relative forgetful functor\begin{displaymath} f^*: Alg_T \to Alg_S, \end{displaymath} which [[pullback|pulls back]] a $T$-algebra $\xi: T X \to X$ to the $S$-algebra $\xi \circ f X: S X \to X$, admits a [[left adjoint]]. \end{itemize} (In the case under discussion, $S$ is the free algebra monad on $Set$, $T$ is the free smooth algebra monad, and $f: S \to T$ is induced from the obvious inclusion $f(n): S(n) \to T(n)$ which interprets an $n$-ary algebra operation (in the theory $Th_S$) as a smooth operation in the theory $Th_T$. See [[finitary monad]] for discussion on the connection between finitary monads $T$ and Lawvere theories $Th_T$.) The desired left adjoint $f_!$ takes an algebra $\theta: S X \to X$ to the [[reflexive coequalizer]] exhibited as a diagram \begin{displaymath} T S X \stackrel{\overset{(\mu_T \circ T f)X}{\to}}{\underset{T\theta}{\to}} T X \stackrel{\pi}{\to} T \otimes_S X \end{displaymath} in the category of $T$-algebras, where $\mu_T: T T \to T$ is the monad multiplication. The coequalizer is denoted $T \otimes_S X$ to emphasize the analogy with pushing forward $S$-modules $X$ along a ring homomorphism $f: S \to T$ to get $T$-modules; the proof below is an arrow-theoretic transcription of the usual proof of the adjunction between pushing forward and pulling back in the context of rings and modules. A finitary monad $T$ \href{http://ncatlab.org/nlab/show/reflexive+coequalizer#applications_4}{preserves reflexive coequalizers}, so that there is a canonical isomorphism \begin{displaymath} T(T \otimes_S X) \cong (T T) \otimes_S X \end{displaymath} It follows that $T$-algebra ($T$-module) maps $\bar{g}: T \otimes_S X \to Y$, i.e., maps that render commutative the diagram \begin{displaymath} \itexarray{ T T \otimes_S X & \stackrel{T\bar{g}}{\to} & T Y \\ \mu \otimes_S X \downarrow & & \downarrow \xi \\ T \otimes_S X & \underset{\bar{g}}{\to} & Y } \end{displaymath} are in bijection with maps $g: T X \to Y$ that render commutative \begin{displaymath} \itexarray{ T T X & \stackrel{T g}{\to} & T Y \\ \mu \downarrow & & \downarrow \xi \\ T X & \underset{g}{\to} & Y } \end{displaymath} (that is to say, $T$-algebra maps $g: T X \to Y$) which additionally coequalize the parallel pair in the diagram \begin{displaymath} T S X \stackrel{\overset{(\mu_T \circ T f)X}{\to}}{\underset{T\theta}{\to}} T X \stackrel{g}{\to} Y \end{displaymath} Since $f: S \to T$ is a monad morphism, we have commutativity of parallel squares in \begin{displaymath} \itexarray{ T S X & \stackrel{\overset{(\mu_T \circ T f)X}{\to}}{\underset{T\theta}{\to}} & T X & \stackrel{g}{\to} & Y \\ f S X \uparrow & & \uparrow f X & & \\ S S X & \stackrel{\overset{\mu_S X}{\to}}{\underset{S \theta}{\to}} & S X } \end{displaymath} so that $g \circ f X$ coequalizes the bottom pair. However, because $g: T X \to Y$ is a $T$-algebra map, its pullback $g \circ f X: S X \to Y$ defines an $S$-algebra map $S X \to f^* Y$. This $S$-algebra map $g \circ f X$ factors through the coequalizer of the bottom pair of maps in $Alg_S$, i.e., factors uniquely through an $S$-algebra map $X \to f^*Y$. This establishes the adjunction $f_! \dashv f^*$. \end{proof} \hypertarget{finitely_presented_rings}{}\subsubsection*{{Finitely presented $C^\infty$-rings}}\label{finitely_presented_rings} \begin{prop} \label{}\hypertarget{}{} $C^\infty(\mathbb{R}^n)$ is the free smooth algebra on $n$ generators, in that for every $n \in \mathbb{N}$ and every smooth algebra $A$ there is an [[adjunction]] isomorphism \begin{displaymath} Hom_{C^\infty Alg}(C^\infty(\mathbb{R}^n), A) \simeq Hom_{Alg}(\mathbb{R}[x_1,...,x_n], A(\mathbb{R})) \,. \end{displaymath} \end{prop} \begin{itemize}% \item Every finitely presented $C^\infty$-ring is fair/germ determined. \end{itemize} We have a chain of inclusions \begin{itemize}% \item finitely presented $C^\infty$-rings \item $\subset$ ``good'' $C^\infty$-rings \item $\subset$ fair $C^\infty$-rings \item $\subset$ finitely generated $C^\infty$-rings \end{itemize} \hypertarget{points_of_smooth_loci}{}\subsubsection*{{Points of smooth loci}}\label{points_of_smooth_loci} An \textbf{$\mathbb{R}$-point} of a $C^\infty$-ring $C$ is a point $* \to \mathbb{L}(C)$ of the corresponding [[smooth locus]], i.e. a morphism $C \to \mathbb{R} \cong C^\infty(*)$. \begin{prop} \label{}\hypertarget{}{} Points of a $C^\infty$-ring are in bijection with points of the underlying $\mathbb{R}$-algebra $U(C)$, i.e. with ordinary $\mathbb{R}$-algebra morphisms $U(C) \to \mathbb{R}$. \end{prop} In particular every Weil algebra $W$ has a unique point $* \to \mathbb{L}(W)$: every Weil algebra is the algebra of functions on an \emph{infinitesimal thickening} of an ordinary point. By the properties of $C^\infty(X)$ for $X$ a smooth manifold discussed below, the $\mathbb{R}$-points of $C^\infty(X)$ are precisely the ordinary points of the manifold $X$. \hypertarget{SmoothFunctionAlgebrasOnSmoothManifolds}{}\subsubsection*{{Smooth function algebras on smooth manifolds}}\label{SmoothFunctionAlgebrasOnSmoothManifolds} \begin{prop} \label{}\hypertarget{}{} Let $f : X \to Z$ and $g : Y \to Z$ be [[transversal maps]] of [[smooth manifold]]s. Then the functor $C^\infty(-)$ sends the [[pullback]] \begin{displaymath} \itexarray{ X \times_Z Y &\to& X \\ \downarrow && \downarrow^f \\ Y &\stackrel{g}{\to}& Z } \end{displaymath} to the [[pushout]] \begin{displaymath} \itexarray{ C^\infty(X) \otimes_{C^\infty(Z)} C^\infty(Y) =: & C^\infty(X \times_Z Y) &\leftarrow& C^\infty(X) \\ & \uparrow && \uparrow^{f^*} \\ & C^\infty(Y) &\stackrel{g^*}{\leftarrow}& C^\infty(Z) } \end{displaymath} \end{prop} In particular this implies (for $Z = {*}$)that the the smooth tensor product of functions on $X$ and $Y$ is the algebra of functions on the [[product]] $X \times Y$: \begin{displaymath} C^\infty(X \times Y) \simeq C^\infty(X) \otimes_\infty C^\infty(Y) \,. \end{displaymath} \begin{remark} \label{}\hypertarget{}{} The ordinary algebraic tensor product of $C^\infty(X)(\mathbb{R})$ and $C^\infty(Y)(\mathbb{R})$ regarded as ordinary algebras does \emph{not} in general satisfy this property. Rather one has an inclusion \begin{displaymath} C^\infty(X)(\mathbb{R}) \otimes C^\infty(Y)(\mathbb{R}) \subset C^\infty(X \times Y)(\mathbb{R}) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} In the context of [[geometric function theory]] the corresponding general statement (without the transversality condition) says that $C^\infty(X)$ is a ``good'' kind of function. The above equation is one sub-aspect of the one of the fundamental theorems of [[geometric infinity-function theory]]. \end{remark} Turning this inclusion into an equivalence is usually called a \emph{completion} of the algebraic tensor product. Therefore we see: The smooth tensor product is automatically the completed tensor product. In summary this yields the following characterization of smooth function algebras on manifolds. \begin{theorem} \label{}\hypertarget{}{} The functor $C^\infty(-) = Hom_{Diff}(-,-) : Diff \to C^\infty Alg$ \begin{itemize}% \item is a [[full and faithful functor]] \item takes values in finitely presented smooth $C^\infty$-algebras \item sends transversal [[pullback]]s to [[coproduct]]s (and hence to the smooth tensor product). \end{itemize} \end{theorem} \hypertarget{deformation_theory_of_smooth_algebras}{}\subsection*{{Deformation theory of smooth algebras}}\label{deformation_theory_of_smooth_algebras} \begin{quote}% \textbf{under construction} \end{quote} For $C$ any category whose objects we think of as ``functions algebras on test spaces'', such as $C = C^\infty Ring$, there is a general intrinsic notion of [[tangent complex]] and [[deformation theory]] of such objects. As describe there, the key structure of interest from which all the other structure here is induced is the \textbf{tangent category} \begin{displaymath} T C \to C \,. \end{displaymath} This is $T C = Ab(Arr(C))$ the [[codomain fibration]] of $C$ ``fiberwise stabilized'', meaning that in each fiber one takes it to consist of $Ab(C/A)$, the abelian [[group object]]s in the [[overcategory]]. We now first recall what this means for ordinary rings and how it induces the ordinary notion of derivations and modules for ordinary rings by setting $C =$ [[CRing]], and then look at what it implies for $C^\infty$-rings by setting $C = C^\infty Rings$. By an old argument by Quillen, for $C =$ [[CRing]] we have that $T C = Mod$ is the [[bifibration]] of [[module]]s over rings, there is a natural equivalence \begin{displaymath} Mod_A \stackrel{\simeq}{\to} Ab(C/A) \,. \end{displaymath} This is induced by the functor that sends an $A$-module $N$ to the corresponding object in the square-0-extension $R \oplus N \to R$. (See [[module]]). From this structure alone a lot of further structure follows: \begin{itemize}% \item a [[derivation]] $\delta A \to N$ is precisely a [[section]] of the corresponding morphism $A \oplus N \to A$ in $C/A$, in the category $C$ namely a ring homomorphism \begin{displaymath} \itexarray{ A &&\stackrel{\delta}{\to}&& A \oplus N \\ & {}_ {=}\searrow && \swarrow \\ && A } \,. \end{displaymath} \item The forgetful functor $T Ring \simeq Mod \to Ring$ has a [[left adjoint]] \begin{displaymath} \Omega_K^1 : Ring \to Mod \end{displaymath} that sends each ring to its module of [[Kähler differential]]s. The fact that it is left adjoint is the universal property of the K\"a{}hler differentials as the objects co-representing derivations $Hom_{Ab(Ring/R)}(\Omega_K^1(A),N) \simeq Hom_{Ring/A}(A,A \oplus N)$. So every derivation $\delta : A \to N$ uniquely corresponds to a module morphism $\Omega^1_K(A) \to N$, namely the one that sends $d a \mapsto \delta(a)$. \end{itemize} This abstract story remains precisely the same for $C^\infty$-rings (and in fact for everything else!) but what it means concretely changes. The crucial observation is (as one can show) that an abelian group object in $C^\infty Ring/A$ is a square-0 extension $(A \oplus N)$ for $N$ an (ordinary) module of the \emph{underlying} $\mathbb{R}$-algebra $A$. This square-0-extension happens to be \emph{uniquely} equipped with the $C^\infty$-Ring-structure given by \begin{displaymath} (f \in C^\infty(\mathbb{R}^n) \to \mathbb{R}) \mapsto \left( (a_1, n_1), \cdots, (a_n, n_n)) \mapsto f(a_1, \cdots, a_n) + \sum_{i = 1^n} \frac{\partial f}{\partial x_i}(a_1, \cdots, a_n) n_i \right) \,. \end{displaymath} This uniquely induced smooth structure on objects in $Ab(C^\infty Ring/A)$ then in turn affects the nature of the notion of derivation and of K\"a{}hler differentials, as those are defined by general abstract reasoning from the former. First of all it follows that a [[derivation]] -- by general abstract definition a morphism of $C^\infty$-rings $Id \oplus \delta : A \to A \oplus N$ -- is a morphism that satisfies \emph{for all} $f \in C^\infty(\mathbb{R}^n, \mathbb{R})$ that \begin{displaymath} \delta : f(a_1, \cdots, a_n) \mapsto \sum_i \frac{\partial f}{\partial x_i} \delta a_i \,. \end{displaymath} For ordinary rings only the compatibility $\delta (a_1 \cdot a_2) = \delta (a_1) a_2 + a_1 \delta(a_2)$ with the single product operation is required. Here, however, compatibility with infinitely more operations $f \in C^\infty(\mathbb{R}^n, \mathbb{R})$ is demanded. Accordingly, then, the K\"a{}hler differentials as defined with respect to such derivations are different from the purely ring-theoretic ones: they produce the \emph{right} notion of smooth 1-forms here, whereas the ring-theoretic one does not. \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} The generalization of the notion of smooth algebra for [[(∞,1)-category theory]] is \begin{itemize}% \item [[smooth (∞,1)-algebra]]. \end{itemize} The generalization to [[supergeometry]] is \begin{itemize}% \item [[smooth superalgebra]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[embedding of smooth manifolds into formal duals of R-algebras]] \item [[derivations of smooth functions are vector fields]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} A standard textbook reference is chapter 1 of \begin{itemize}% \item [[Ieke Moerdijk]] and [[Gonzalo Reyes]], \emph{[[Models for Smooth Infinitesimal Analysis]]} Springer (1991) \end{itemize} The concept of $C^\infty$-rings in particular and that of [[synthetic differential geometry]] in general was introduced in \begin{itemize}% \item [[Bill Lawvere]], \emph{Categorical dynamics} in [[Anders Kock]] (eds.) \emph{Topos theoretic methods in geometry}, volume 30 of \emph{Various Publ. Ser.}, pages 1-28, Aarhus Univ. (1979) \end{itemize} but examples of the concept are older. A discussion from the point of view of [[functional analysis]] is in \begin{itemize}% \item G. Kainz, A. Kriegl, [[Peter Michor]], \emph{$C^\infty$-algebras from the functional analytic view point} Journal of pure and applied algebra 46 (1987) (\href{http://www.mat.univie.ac.at/~michor/c-oo-alg.pdf}{pdf}) \end{itemize} A characterization of those $C^\infty$-rings that are algebras of smooth functions on some [[smooth manifold]] is given in \begin{itemize}% \item [[Peter Michor]], [[Jiri Vanzura]], \emph{Characterizing algebras of $C^\infty$-functions on manifolds} (\href{http://www.emis.de/journals/CMUC/pdf/cmuc9603/michor.pdf}{pdf}) \end{itemize} Lawvere's ideas were later developed by [[Eduardo Dubuc]], [[Anders Kock]], [[Ieke Moerdijk]], [[Gonzalo Reyes]], and [[Gavin Wraith]]. Studies of the properties of $C^\infty$-rings include \begin{itemize}% \item [[Ieke Moerdijk]], [[Gonzalo Reyes]], \emph{[[RingsOfSmoothFunctionsI.pdf:file]]} , Journal of Algebra 99 (1986) \end{itemize} The notion of the spectrum of a $C^\infty$-ring and that of $C^\infty$-[[scheme]]s is discussed in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{$C^\infty$-schemes} Amer. J. Math. 103 (1981) (\href{http://www.math.ist.utl.pt/~jroquet/Dubuc.pdf}{pdf} \href{http://www.jstor.org/stable/select/2374046}{JSTOR}). \end{itemize} and more generally in \begin{itemize}% \item [[Ieke Moerdijk]], [[Gonzalo Reyes]], \emph{Rings of smooth functions and their localization II} , in \emph{Mathematical logic and theoretical computer science} page 275 (\href{http://books.google.nl/books?id=w02XaOa_0HAC&pg=PA262&lpg=PA262&dq=smooth+zariski+topos&source=bl&ots=Hj0AN3Lz3y&sig=TqRwTXz_u5R30AN2udLNOMQ2Ly0&hl=nl&ei=mCWZS-eLJcaD-QalyZlS&sa=X&oi=book_result&ct=result&resnum=2&ved=0CA4Q6AEwAQ#v=onepage&q=smooth%20zariski%20topos&f=false}{Google books}) \item [[Marta Bunge]], [[Eduardo Dubuc]], \emph{Archimedian local $C^\infty$-rings and models of synthetic differential geometry} Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 27 no. 3 (1986), p. 3-22 (\href{http://www.numdam.org/item?id=CTGDC_1986__27_3_3_0}{numdam}). \end{itemize} More recent developments along these lines are in \begin{itemize}% \item [[Dominic Joyce]], \emph{Algebraic geometry over $C^\infty$-rings} (\href{http://arxiv.org/abs/1001.0023}{arXiv:1001.0023}) \end{itemize} The [[higher geometry]] generalization to a theory of [[derived smooth manifold]]s -- [[space]]s with [[structure sheaf]] taking values in [[simplicial C∞-ring]]s -- was initiated in \begin{itemize}% \item [[David Spivak]], \emph{Quasi-Smooth derived manifolds} (\href{http://www.uoregon.edu/~dspivak/thesis2.pdf}{pdf of original version}, \href{http://arxiv.org/abs/0810.5174}{arXiv:0810.5174}) \end{itemize} based on the general machinery of [[structured (∞,1)-topos]]es in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Structured Spaces]]} \end{itemize} where this is briefly mentioned in the very last paragraph. See also the references at [[Fermat theory]], of which $C^\infty$-rings are a special case. And the references at [[smooth locus]], the formal dual of a $C^\infty$-ring. And the references at [[super smooth topos]], which involves generalizations of $C^\infty$-rings to [[supergeometry]]. [[!redirects smooth algebras]] [[!redirects generalized smooth algebra]] [[!redirects generalized smooth algebras]] [[!redirects C-infinity-ring]] [[!redirects C-infinity ring]] [[!redirects C-infinity-rings]] [[!redirects C-infinity rings]] [[!redirects C-∞-ring]] [[!redirects C-∞ ring]] [[!redirects C-∞-rings]] [[!redirects C-∞ rings]] \end{document}