\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smooth infinity-stack} \begin{quote}% For more see at \emph{[[smooth ∞-groupoid]]}. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{in_terms_of_groupoids_internal_to_smooth_spaces}{In terms of $\infty$-groupoids internal to smooth spaces}\dotfill \pageref*{in_terms_of_groupoids_internal_to_smooth_spaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of smooth $\infty$-stack is essentially that of \begin{itemize}% \item [[smooth ∞-groupoid]]. \item [[orbifold|∞-orbifold]]. \end{itemize} Following the logic described at \begin{itemize}% \item [[motivation for sheaves, cohomology and higher stacks]] \item [[(∞,1)-topos]] \end{itemize} a \emph{smooth $\infty$-stack} is the [[∞-categorification]] of [[smooth space]] and [[differentiable stack]]. It is an [[∞-stack]] on the ([[essentially small category|essentially small]]) [[site]] [[Diff]] of smooth [[manifolds]], or correspondingly on $Ball \subset Diff$ or [[CartSp]] $\subset Diff$ (see [[smooth space]] for more on that). So smooth $\infty$-stacks are the objects in the [[(∞,1)-topos]] that computes \emph{smooth} generalized [[cohomology]]. (See [[schreiber:Differential Nonabelian Cohomology|differential nonabelian cohomology]] and the disucssion under ``Models'' below for more on that). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $CartSp = \{ (\mathbb{R}^n \to \mathbb{R}^m) \in Diff| n,m \in \mathbb{N}\} \subset Diff$ be the full subcategory of [[Diff] on the [[Cartesian spaces]] of the simple form $\mathbb{R}^n$, equipped with the standard structure of a [[site]] with the [[coverage]] given by [[open covers]] of manifolds. Then \begin{displaymath} Smooth\infty Grpd := (\infty,1)Sh(CartSp) \end{displaymath} is the [[(∞,1)-topos]] given by the [[(∞,1)-category of (∞,1)-sheaves]] on $CartSp$. This is the [[cohesive (∞,1)-topos]] [[Smooth∞Grpd]]. \hypertarget{models}{}\subsection*{{Models}}\label{models} There is a large number of [[model category|model structures]] [[presentable (infinity,1)-category|presenting]] $\mathbf{H}_{Diff}$: all the [[model structure on simplicial presheaves|model structures on simplicial (pre)sheaves]] on $CartSp$. \hypertarget{in_terms_of_groupoids_internal_to_smooth_spaces}{}\subsubsection*{{In terms of $\infty$-groupoids internal to smooth spaces}}\label{in_terms_of_groupoids_internal_to_smooth_spaces} Notice for instance that there is the [[model structure on simplicial sheaves]] given by the category $SSh(CartSp)$ equipped with the injective [[local model structure on simplicial presheaves]]. But sheaves on cartesian spaces \begin{displaymath} Sh(CartSp) =: SmoothSp \end{displaymath} is the category of [[smooth spaces]], and $SSh(CartSp)$ is just the category of [[simplicial objects]] of that \begin{displaymath} SSh(CartSp) \simeq SmoothSp^{\Delta^{op}} \,. \end{displaymath} So one model for smooth $\infty$-stacks is given by [[simplicial object|simplicial]] [[smooth spaces]]. Notice that the fibrant object in $SmoothSp^{\Delta^{op}}$ are the globally [[Kan complex]]-valued sheaves under the [[equivalence of categories]] \begin{displaymath} SmoothSp^{\Delta^{op}} \simeq Sh(CartSp, SSet) \,, \end{displaymath} that satisfy [[descent]] (see [[descent for simplicial presheaves]]). Being [[Kan complex]]-valued just means that the fibrant objects are sheaves on $CartSp$ with values in [[∞-groupoids]]. Moreover, the [[descent]]-condition on $CartSp$ is comparatively trivial, and in many cases (\ldots{}details eventually here, but see examples below\ldots{}) entirely empty, as every cartesian space is (smoothly, even) contractible. This means that the fibrant objects in $SSh(CartSp)$ are pretty much nothing but [[∞-groupoids]] [[internalization|internal to]] [[smooth spaces]]. (But notice that the requirement that she corresponding sheaf is [[Kan complex]]-valued is a bit weaker that other notions of ``$\infty$-groupoid internal to smooth spaces'' that one may come up with). In particular [[∞-groupoids]] internal to [[diffeological spaces]] are therefore a model for smooth $\infty$-stacks. Moreover, a morphism between smooth $\infty$-stacks modeled by such internal $\infty$-groupoids is modeled as an $\infty$-[[anafunctor]] (see [[simplicial localization]], [[homotopy category]] and [[category of fibrant objects]] for details). The model of smooth $\infty$-stacks given by $\infty$-groupoids internal to [[diffeological spaces]] with [[anafunctors]] as morphism between them is the model used in the [[John Baez|Baez]]-ian school description of [[principal infinity-bundle|higher principal bundles]] and [[schreiber:Differential Nonabelian Cohomology|differential nonabelian cohomology]]. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} Let $G$ be a [[Lie group]]. Using the embedding \begin{displaymath} Diff \hookrightarrow SmoothSp \end{displaymath} of [[manifolds]] into [[smooth spaces]] we may regard $G$ naturally as a sheaf on CartSp. Write $\mathbf{B} G$ for the [[delooping]] of $G$, a one-object [[groupoid]] [[internalization|internal to]] [[smooth space|SmoothSp]]. Postcomposing with the [[nerve]] functor $N :$ [[Grpd]] $\to$ [[SSet]] this yields a [[Kan complex]]-valued [[simplicial presheaf|simplicial sheaf]] $N \mathbf{B} G$ which we shall by convenient and useful abuse of notation just call $\mathbf{B} G$ itself. Notice that $\mathbf{B} G$ does not satisfy [[descent]] when regarded as a simplicial sheaf on all of [[Diff]]: there its [[∞-stackification]] is instead $G Bund(-)$, the [[stack]] of $G$-[[principal bundles]] \begin{displaymath} G Bund(-) : U \mapsto groupoid of G-bundles on U \end{displaymath} (or rather, in our context of simplicial sheaves, a [[rectified infinity-stack|rectification]] of that). But restricted to the [[site]] $CartSp$ the [[simplicial presheaf|simplicial sheaf]] $\mathbf{B} G$ \emph{does} satisfy [[descent]]: there is up to isomorphism only a single $G$-bundle on $\mathbb{R}^n$, so that one finds an [[equivalence of categories]] \begin{displaymath} G Bund(\mathbb{R}^n) \simeq (\mathbf{B} G)(\mathbb{R}^n) := \mathbf{B}(Diff(\mathbb{R}^n, G)) \end{displaymath} for each $\mathbb{R}^n$. This means that $\mathbf{B}G$ is a fibrant object in the injective [[model structure on simplicial sheaves]]. So in particular all the constructions and examples discussed at [[category of fibrant objects]] apply to $\mathbf{B}G$: we get the [[generalized universal bundle|universal G-bundle]] $\mathbf{E} G \to \mathbf{B}G$ regarded as a smooth $\infty$-stack as the [[pullback]] \begin{displaymath} \itexarray{ \mathbf{E}G &\to& {*} \\ \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{d_0}{\to}& \mathbf{B}G \\ \downarrow^{d_1} \\ \mathbf{B}G } \end{displaymath} in $SmoothSp^{\Delta^{op}}$, which, do to the [[nerve]] being [[right adjoint]] is the same as the image under the nerve of the corresponding [[pullback]] in sheaves of [[groupoids]] (so that still our notational suppressing of $N$ is justified). etc. [[!redirects smooth infinity-stacks]] [[!redirects smooth ∞-stack]] [[!redirects smooth ∞-stacks]] \end{document}