\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smooth spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{FromChainComplexesOfSmoothModules}{From chain complexes of smooth modules}\dotfill \pageref*{FromChainComplexesOfSmoothModules} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExamplesDeRhamSpectra}{De Rham spectra}\dotfill \pageref*{ExamplesDeRhamSpectra} \linebreak \noindent\hyperlink{algebraic_ktheory_of_smooth_manifolds}{Algebraic K-theory of smooth manifolds}\dotfill \pageref*{algebraic_ktheory_of_smooth_manifolds} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[sheaf of spectra]] on the [[site]] of all [[smooth manifolds]] may be thought of as a [[spectrum]] equipped with generalized [[smooth structure]], in just the same way as an [[(∞,1)-sheaf]] on this site may be thought of as a [[smooth ∞-groupoid]]. Therefore one might speak of the [[stable (∞,1)-category]] \begin{displaymath} Sh_\infty(SmoothMfd, Spectra) \simeq Stab(Sh_\infty(SmoothMfd)) = Stab(Smooth \infty Grpd) \end{displaymath} which is the [[stabilization]] of that of [[smooth ∞-groupoids]] as being the $\infty$-category of \emph{smooth spectra}, just as the [[stable (∞,1)-category of spectra]] itself is the [[stabilization]] of that of bare [[∞-groupoids]]. Together with [[smooth ∞-groupoids]] smooth spectra sit inside the [[tangent cohesive (∞,1)-topos]] over smooth manifolds. By the discussion \href{tangent+cohesive+∞-topos#CohesiveAndDifferentialRefinement}{there}, every smooth spectrum sits in a hexagonal [[differential cohomology diagram]] which exhibits it (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13}) as the moduli of a generalized [[differential cohomology]] theory (in generalization of how every ordinary spectrum, via the [[Brown representability theorem]], corresponds to a bare [[generalized (Eilenberg-Steenrod) cohomology theory]]). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{FromChainComplexesOfSmoothModules}{}\subsubsection*{{From chain complexes of smooth modules}}\label{FromChainComplexesOfSmoothModules} \begin{defn} \label{}\hypertarget{}{} Write \begin{itemize}% \item $Smooth0Type \coloneqq Sh(SmthMfd)$ for the [[topos]] of [[smooth spaces]]; \item $\mathbf{R} \in Smooth0Type$ for the sheaf of [[real number]]-valued [[smooth functions]] (the canonical [[line object]] in $Smooth0Type$); \item $\mathbf{R} Mod$ for the category of [[abelian sheaves]] over smooth manifolds which are $\mathbf{R}$-[[modules]]. \end{itemize} \end{defn} \begin{defn} \label{RModulesAsInfinityPresheaves}\hypertarget{RModulesAsInfinityPresheaves}{} Let $C_\bullet \in Ch_\bullet(\mathbf{R}Mod)$ be a [[chain complex]] (unbounded) of [[abelian sheaves]] of $\mathbf{R}$-modules. Via the projective [[model structure on functors]] this defines an [[(∞,1)-presheaf]] of [[chain complexes]] \begin{displaymath} Ch_\bullet(\mathbf{R}Mod) \longrightarrow Sh(SmthMfd, Ch_{\bullet}) \longrightarrow L_{qi} PSh(SmthMfd, Ch_\bullet) \simeq PSh_\infty(SmthMfs, Ch_\bullet) \,. \end{displaymath} We still write $C_\bullet\in PSh_\infty(SmthMfd, Ch_\bullet)$ for this [[(∞,1)-presheaf]] of chain complexes. \end{defn} \begin{prop} \label{}\hypertarget{}{} Under the [[stable Dold-Kan correspondence]] \begin{displaymath} DK \;\colon\; Ch_\bullet \longrightarrow Spectra \end{displaymath} a chain complex of $\mathbf{R}$-modules $C_\bullet \in Ch_\bullet(\mathbf{R}Mod)$, regarded as an [[(∞,1)-presheaf]] of spectra on $SmthMfd$ as in def. \ref{RModulesAsInfinityPresheaves}, is already an [[(∞,1)-sheaf]], hence a smooth spectrum (i.e. without further [[∞-stackification]]). \end{prop} This appears as (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13, lemma 7.12}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExamplesDeRhamSpectra}{}\subsubsection*{{De Rham spectra}}\label{ExamplesDeRhamSpectra} Write $Ch_\bullet$ for the [[(∞,1)-category of chain complexes]] (of [[abelian groups]], hence over the [[ring]] $\mathbb{Z}$ of [[integers]]). It is convenient to choose for $A_\bullet \in Ch_\bullet$ the grading convention \begin{displaymath} \itexarray{ \vdots \\ \downarrow \\ A_{-1} \\ \downarrow \\ A_0 \\ \downarrow \\ A_1 \\ \downarrow \\ \vdots } \end{displaymath} such that under the [[stable Dold-Kan correspondence]] \begin{displaymath} DK \;\colon\; Ch_\bullet \stackrel{}{\longrightarrow} Spectra \end{displaymath} the [[homotopy groups]] of spectra relate to the [[homology groups]] by \begin{displaymath} \pi_n(DK(A_\bullet)) \simeq H_{-n}(A_\bullet) \,. \end{displaymath} In particular for $A \in$ [[Ab]] an [[abelian group]] then $A[n]$ denotes the chain complex concentrated on $A$ in degree $-n$ in this counting. The grading is such as to harmonize well with the central example of a sheaf of chain complexes over the site of [[smooth manifolds]], which is the [[de Rham complex]], regarded as a [[smooth spectrum]] via the discussion at \emph{\href{smooth+spectrum#FromChainComplexesOfSmoothModules}{smooth spectrum -- from chain complexes of smooth modules}} \begin{displaymath} \Omega^\bullet \in Sh_\infty(SmthMfd, Ch_\bullet) \longrightarrow Sh_\infty(SmthMfd, Spectra) \hookrightarrow T \mathbf{H} \end{displaymath} \begin{displaymath} \Omega^{\bullet} \;\colon\; X\mapsto (\cdots \to 0 \to 0 \to \Omega^0(X) \stackrel{\mathbf{d}}{\to} \Omega^1(X)\stackrel{\mathbf{d}}{\to} \cdots) \end{displaymath} with $\Omega^0(X) = C^\infty(X, \mathbb{R})$ in degree 0. We also need for $n \in \mathbb{N}$ the truncated sheaf of complexes \begin{displaymath} \Omega^{\bullet \geq n} \in Sh_\infty(SmthMfd, Ch_\bullet) \longrightarrow Sh_\infty(SmthMfd, Spectra) \hookrightarrow T \mathbf{H} \end{displaymath} \begin{displaymath} \Omega^{\bullet \geq n} \;\colon\; X\mapsto (\cdots \to 0 \to 0 \to \Omega^n(X) \stackrel{\mathbf{d}}{\to} \Omega^{n+1}(X)\stackrel{\mathbf{d}}{\to} \cdots) \end{displaymath} with $\Omega^n(X)$ in degree $n$. More genereally, for $C \in Ch_\bullet$ any [[chain complex]], there is $(\Omega \otimes C)^{\bullet \geq n}$ given over each manifold $X$ by the [[tensor product of chain complexes]] followed by truncation. Hence \begin{displaymath} (\Omega \otimes C)^{\bullet \geq n} = (\cdots \to 0 \to 0 \to \oplus_{k \in \mathbb{N}} \Omega^{k}(X) \otimes C_{n-k} \stackrel{\mathbf{d} \pm d_{C}}{\to} \oplus_{k \in \mathbb{N}} \Omega^{k}(X) \otimes C_{n-k+1}\stackrel{\mathbf{d}\pm d_{C}}{\to} \cdots) \,. \end{displaymath} \hypertarget{algebraic_ktheory_of_smooth_manifolds}{}\subsubsection*{{Algebraic K-theory of smooth manifolds}}\label{algebraic_ktheory_of_smooth_manifolds} see at \emph{[[algebraic K-theory of smooth manifolds]]} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} [[!redirects smooth spectra]] \end{document}