\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{smooth structure on a topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[topos]] can be viewed as a generalization of a [[topological space]]. A \emph{smooth structure on a topos} is a corresponding generalization of the notion of [[smooth manifold]], in that to put a smooth structure on $Sh(X)$, for a topological space $X$, is (at least closely related to) putting the structure of a smooth manifold on $X$. However, since it is phrased internally with reference to the (Cauchy and Dedekind) [[real numbers objects]], it is applicable to any topos. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[topos]] $\mathbf{H}$, write \begin{itemize}% \item $\mathbb{N} \in \mathbf{H}$ for its [[natural numbers object]]; \item $\mathbb{R}_{C} \in \mathbf{H}$ for its [[Cauchy real numbers object]]; \item $\mathbb{R}_{D} \in \mathbf{H}$ for its [[Dedekind real numbers object]]; \item $\mathbb{R} \in$ [[Set]] for the external [[real numbers]]. \end{itemize} There are canononical [[subobject]] inclusions \begin{displaymath} \mathbb{N} \hookrightarrow \mathbb{R}_C \hookrightarrow \mathbb{R}_D \,. \end{displaymath} \begin{defn} \label{StandardFunction}\hypertarget{StandardFunction}{} (\hyperlink{Fourman75}{Fourman 75, def. 3.6}) A morphism \begin{displaymath} g \colon \mathbb{R}_D^{n_1} \longrightarrow \mathbb{R}_D^{n_2} \end{displaymath} in the topos $\mathbf{H}$ is called a \textbf{standard function}, precisely if \begin{enumerate}% \item it is a [[continuous function]] in the internal sense that \begin{displaymath} \underset{\epsilon \gt 0}{\forall} \underset{\delta \gt 0}{\exists} \underset{\vec x, \vec y \in \mathbb{R}_D^{n_1}}{\forall} \left( \left( \underset{i}{max} {\vert x_i - y_i \vert} \lt \delta \right) \Rightarrow \left( \underset{i}{max} {\vert g(\vec x)_i - g(\vec y)_i \vert} \lt \delta \right) \right) \end{displaymath} \item it respects the sub-object of Cauchy reals, in that \begin{displaymath} \underset{\vec x \in \mathbb{R}_C^{n_1}}{\forall} \left( g(\vec x) \in \mathbb{R}_{C}^{n_2} \right) \,. \end{displaymath} \end{enumerate} \end{defn} We will furthermore consider \textbf{smooth standard functions}, meaning standard functions that satisfy the internalized ordinary definition of [[smooth function]] (i.e. $C^\infty$). We define an [[equivalence relation]] on $\mathbb{R}_D^n$ by taking two elements to be equivalent if there are smooth standard functions taking them into each other: \begin{displaymath} \vdash (r \simeq s) \coloneqq \underset{{f,g } \atop {smooth \; standard\;functions}}{\exists} \left( \left( f(r) = s \right) \wedge \left( g(s) = r \right) \right) \,. \end{displaymath} \begin{defn} \label{SmoothStructureDimN}\hypertarget{SmoothStructureDimN}{} (\hyperlink{Fourman75}{Fourman 75, def. 4.1}) A \textbf{smooth structure of dimension $n$} on a topos $\mathbf{H}$ is an equivalence class for the above equivalence relation on $\mathbb{R}_D^n$. In other words, the object of smooth structures of dimension $n$ is the quotient of $\mathbb{R}_D^n$ by this equivalence relation. \end{defn} \begin{defn} \label{}\hypertarget{}{} (\hyperlink{Fourman75}{Fourman 75, def. 4.4}) Given a smooth structure $S$ of dimension $n$ on the topos $\mathbf{H}$ according to def. \ref{SmoothStructureDimN}, then the \textbf{smooth real number object} is the [[subobject]] \begin{displaymath} \mathbb{R}_S \hookrightarrow \mathbb{R}_D \end{displaymath} defined internally as the set of all images of points in $S\subseteq \mathbb{R}_D^n$ under smooth standard functions $\mathbb{R}_D^n \to \mathbb{R}_D$. In symbols, it is given by \begin{displaymath} \mathbb{R}_S \coloneqq \left\{ x \in \mathbb{R}_D \;|\; \underset{{smooth \; standard\;funct.}\atop{\mathbb{R}_D^n \stackrel{f}{\to} \mathbb{R}_D}}{\exists} \underset{s \in S}{\exists} (x = f(s)) \right\} \,. \end{displaymath} \end{defn} Note that any function constant at a Cauchy real is standard. Therefore, every Cauchy real is a smooth real. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} (\hyperlink{Fourman75}{Fourman 75, example 4.3 1}) Let $X$ be a [[smooth manifold]] of [[dimension]] $n$, with [[sheaf topos]] $\mathbf{H} \coloneqq Sh(X)$. As shown at [[real numbers object]], $\mathbb{R}_D$ is then the sheaf of \emph{continuous} real-valued functions on $X$. Let $S\subseteq \mathbb{R}_D^n$ be the sheaf of local [[coordinate systems]], i.e. $S(U)$ is the set of real-valued functions $U\to \mathbb{R}^n$ that are smooth and are locally diffeomorphisms onto their images. Then $S$ is a smooth structure on $Sh(X)$ of dimension $n$, according to def. \ref{SmoothStructureDimN}. The corresponding object $\mathbb{R}_S$ of smooth reals is the sheaf of \emph{smooth} real-valued functions $X\to \mathbb{R}$. Note that since $X$ is locally connected, the Cauchy real numbers object $\mathbb{R}_C$ in $Sh(X)$ is the sheaf of locally constant real-valued functions, so $\mathbb{R}_S$ sits strictly in between $\mathbb{R}_C$ and $\mathbb{R}_D$. \end{example} \begin{example} \label{}\hypertarget{}{} Let $h:1\to \mathbb{R}_D^n$ be any global section of $\mathbb{R}_D^n$. Then the equivalence class of $h$, under the above equivalence relation, is a smooth structure. In particular, if $h$ is a tuple of Cauchy real numbers (such as $0$), then so is every point in $S$, and thus $\mathbb{R}_S = \mathbb{R}_C$. This gives the ``discrete'' smooth structure on $\mathbf{H}$. For $\mathbf{H}=Sh(X)$, such a global section is a continuous map $h:X\to \mathbb{R}^n$, and this gives the smooth structure ``cogenerated by'' $h$, in that it makes $h$ smooth and only those other functions that must be smooth if $h$ is. The case when $h$ is a Cauchy real corresponds to $h:X\to \mathbb{R}^n$ being locally constant, in which case all smooth functions are locally constant; this is the ``minimal'' smooth structure on a topological space $X$. \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Fourman]], \emph{Comparaison des R\'e{}els d'un Topos - Structures Lisses sur un Topos El\'e{}mentaire} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{16} (1975) pp.233-239. ( \emph{Colloque Amiens 1975 proceedings} ) (p. 18-24 in \href{http://www.numdam.org/item?id=CTGDC_1975__16_3_217_0}{NUMDAM})) \end{itemize} \end{document}