\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sober topological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{separation}{Separation}\dotfill \pageref*{separation} \linebreak \noindent\hyperlink{AsLocalesWithEnoughPoints}{As locales with enough points}\dotfill \pageref*{AsLocalesWithEnoughPoints} \linebreak \noindent\hyperlink{Reflection}{Soberification reflection}\dotfill \pageref*{Reflection} \linebreak \noindent\hyperlink{enough_points}{Enough points}\dotfill \pageref*{enough_points} \linebreak \noindent\hyperlink{examples_and_nonexamples}{Examples and Non-examples}\dotfill \pageref*{examples_and_nonexamples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} If $\mathcal{O}(X)$ is the topology on a [[topological space]] $X$ (i.e. its [[frame of opens]]), and if a map $\mathcal{O}(X) \to \mathcal{O}(1)$ that preserves finite [[meets]] and arbitrary [[joins]] (a [[homomorphism]] of [[frames]]) is considered an instance of ``seeing a point $1 \to X$'', then $X$ is \emph{sober} precisely if every point we see is really there (i.e., is induced from a [[continuous function]] $1 \to X$), and if we never see double. The condition that a [[topological space]] be \emph{sober} is an extra condition akin to a [[separation axiom]]. In fact with [[classical logic]] it is a condition implied by the $T_2$ [[separation axiom]] ([[Hausdorff implies sober]]) and implying $T_0$. \begin{tabular}{l} [[separation axioms]]\\ \hline $\itexarray{\\ &&& T_2 = \text{Hausdorff} \\ && \swArrow && \seArrow \\ \, & T_1 && && \text{sober} & \, \\ && \seArrow && \swArrow \\ &&& T_0 = \text{Kolmogorov} \\ }$\\ \end{tabular} (Note that this diagram is not a pullback -- there are [[Hausdorff implies sober|$T_1$ sober spaces which are not Hausdorff]].) But the sobriety condition on a topological space has deeper meaning. It means that [[continuous functions]] betwen sober topolgical spaces are entirely determined by their [[inverse image]] functions on the [[frames of opens]], disregarding the underlying sets of points. Technically this means that the sober topological spaces are precisely the [[locales]] among the topological spaces. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[topological space]] $X$ is \textbf{sober} if its [[points]] are exactly determined by its [[lattice of open subsets]]. Different equivalent ways to say this are: \begin{itemize}% \item The [[continuous map]] from $X$ to the space of points of the [[locale]] that it gives rise to (see there for details) is a [[homeomorphism]]. \item The [[function]] from points of $X$ to the \emph{[[completely prime filter|completely prime filters]]} of its open-set lattice is a [[bijection]]. \item (Assuming classical logic) every [[irreducible closed set]] (non-empty closed set that is not the [[union]] of any two proper closed subsets) is the [[topological closure|closure]] of a unique point. \end{itemize} In each case, half of the definition is that $X$ is [[T0]], the other half states that $X$ has \textbf{enough points}: \begin{defn} \label{EnoughPointsOfATopologicalSpace}\hypertarget{EnoughPointsOfATopologicalSpace}{} A [[topological space]] $X$ has \emph{enough points} if the following equivalent conditions hold: \begin{itemize}% \item The [[continuous map]] from $X$ to the space of points of the [[locale]] that it gives rise to (see there for details) is a [[quotient space|quotient map]]. \item The [[function]] from points of $X$ to the \emph{[[completely prime filter|completely prime filters]] of its [[lattice of open subsets|open-set lattice]] is a [[surjection]].} \item (Assuming classical logic) every [[irreducible closed set]] (non-empty closed set that is not the [[union]] of any two proper closed subsets) is the [[topological closure|closure]] of a point. \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{separation}{}\subsubsection*{{Separation}}\label{separation} \begin{itemize}% \item Sobriety is a [[separation property]] that is stronger than [[T0]], but incomparable with [[T1]]. With [[classical logic]], every [[Hausdorff space]] is sober (see at \emph{[[Hausdorff implies sober]]}), but this can fail [[constructive mathematics|constructively]]. \end{itemize} \begin{displaymath} Hausdorff = T_2 \Rightarrow sober \Rightarrow T_0 \end{displaymath} \hypertarget{AsLocalesWithEnoughPoints}{}\subsubsection*{{As locales with enough points}}\label{AsLocalesWithEnoughPoints} What makes the concept of sober topological spaces special is that for them the concept of [[continuous functions]] may be expressed entirely in terms of the relations between their [[open subsets]], disregarding the underlying set of points of which these open are in fact subsets. In order to express this property (proposition \ref{FrameMorphismsBetweenOpensOfSoberSpaces} below), we first introduce the following terminology: \begin{defn} \label{HomomorphismOfFramesOfOpens}\hypertarget{HomomorphismOfFramesOfOpens}{} Let $(X,\tau_X)$ and $(Y,\tau_Y)$ be [[topological spaces]]. Then a function \begin{displaymath} \tau_X \longleftarrow \tau_Y \;\colon\; \phi \end{displaymath} between their [[frame of opens|sets of open subsets]] is called a \emph{[[frame]] [[homomorphism]]} if it preserves \begin{enumerate}% \item arbitrary [[unions]]; \item [[finite number|finite]] [[intersections]]. \end{enumerate} In other words, $\phi$ is a frame homomorphism if \begin{enumerate}% \item for every [[set]] $I$ and every $I$-indexed set $\{U_i \in \tau_Y\}_{i \in I}$ of elements of $\tau_Y$, then \begin{displaymath} \phi\left(\underset{i \in I}{\cup} U_i\right) \;=\; \underset{i \in I}{\cup} \phi(U_i)\;\;\;\;\in \tau_X \,, \end{displaymath} \item for every [[finite set]] $J$ and every $J$-indexed set $\{U_j \in \tau_Y\}$ of elements in $\tau_Y$, then \begin{displaymath} \phi\left(\underset{j \in J}{\cap} U_j\right) \;=\; \underset{j \in J}{\cap} \phi(U_j) \;\;\;\;\in \tau_X \,. \end{displaymath} \end{enumerate} \end{defn} \begin{remark} \label{PreservationOfInclusionsByFrameHomomorphism}\hypertarget{PreservationOfInclusionsByFrameHomomorphism}{} A [[frame]] [[homomorphism]] $\phi$ as in def. \ref{HomomorphismOfFramesOfOpens} necessarily also preserves inclusions in that \begin{itemize}% \item for every inclusion $U_1 \subset U_2$ with $U_1, U_2 \in \tau_Y \subset P(Y)$ then \begin{displaymath} \phi(U_1) \subset \phi(U_2) \;\;\;\;\;\;\; \in \tau_X \,. \end{displaymath} \end{itemize} This is because inclusions are witnessed by unions \begin{displaymath} (U_1 \subset U_2) \;\Leftrightarrow\; \left( U_1 \cup U_2 = U_2 \right) \end{displaymath} and by finite intersections: \begin{displaymath} (U_1 \subset U_2) \;\Leftrightarrow\; \left( U_1 \cap U_2 = U_1 \right) \,. \end{displaymath} \end{remark} \begin{example} \label{}\hypertarget{}{} For \begin{displaymath} f \;\colon\; (X,\tau_X) \longrightarrow (Y, \tau_Y) \end{displaymath} a [[continuous function]], then its function of [[pre-images]] \begin{displaymath} \tau_X \longleftarrow \tau_Y \;\colon\; f^{-1} \end{displaymath} is a frame homomorphism according to def. \ref{HomomorphismOfFramesOfOpens}. \end{example} For sober topological spaces the converse holds: \begin{prop} \label{FrameMorphismsBetweenOpensOfSoberSpaces}\hypertarget{FrameMorphismsBetweenOpensOfSoberSpaces}{} If $(X,\tau_X)$ and $(Y,\tau_Y)$ are [[sober topological spaces]], then for every frame homomorphism (def. \ref{HomomorphismOfFramesOfOpens}) \begin{displaymath} \tau_X \longleftarrow \tau_Y \;\colon\; \phi \end{displaymath} there is a unique [[continuous function]] $f \colon X \to Y$ such that $\phi$ is the function of forming [[pre-images]] under $f$: \begin{displaymath} \phi = f^{-1} \,. \end{displaymath} \end{prop} We prove this \hyperlink{ProofOfFrameMorphismsBetweenOpensOfSoberSpaces}{below}, after the following lemma. Let $\ast = (\{1\}, \tau_\ast = \left\{\emptyset, \{1\}\right\})$ be the [[point]] [[topological space]]. \begin{lemma} \label{FrameHomomorphismsToPointAreIrrClSub}\hypertarget{FrameHomomorphismsToPointAreIrrClSub}{} For $(X,\tau)$ a [[topological space]], then there is a [[bijection]] between the [[irreducible closed subspaces]] of $(X,\tau)$ and the [[frame]] [[homomorphisms]] from $\tau_X$ to $\tau_\ast$, given bys \begin{displaymath} \itexarray{ Hom_{Frame}(\tau_X, \tau_\ast) &\underoverset{\simeq}{}{\longrightarrow}& IrrClSub(X) \\ \phi &\mapsto& X \backslash U_\emptyset(\phi) } \end{displaymath} where $U_\emptyset(\phi)$ is the [[union]] of all elements $U \in \tau_x$ such that $\phi(U) = \emptyset$: \begin{displaymath} U_{\emptyset}(\phi) \coloneqq \underset{{U \in \tau_X} \atop {\phi(U) = \emptyset} }{\cup} U \,. \end{displaymath} \end{lemma} See also ([[Stone Spaces|Johnstone 82, II 1.3]]). \begin{proof} First we need to show that the function is well defined in that given a frame homomorphism $\phi \colon \tau_X \to \tau_\ast$ then $X \backslash U_\emptyset(\phi)$ is indeed an irreducible closed subspace. To that end observe that: $(\ast)$ \emph{If there are two elements $U_1, U_2 \in \tau_X$ with $U_1 \cap U_2 \subset U_{\emptyset}(\phi)$ then $U_1 \subset U_{\emptyset}(\phi)$ or $U_2 \subset U_{\emptyset}(\phi)$.} This is because \begin{displaymath} \begin{aligned} \phi(U_1) \cap \phi(U_2) & = \phi(U_1 \cap U_2) \\ & \subset \phi(U_{\emptyset}(\phi)) \\ & = \emptyset \end{aligned} \,, \end{displaymath} where the first equality holds because $\phi$ preserves finite intersections by def. \ref{HomomorphismOfFramesOfOpens}, the inclusion holds because $\phi$ respects inclusions by remark \ref{PreservationOfInclusionsByFrameHomomorphism}, and the second equality holds because $\phi$ preserves arbitrary unions by def. \ref{HomomorphismOfFramesOfOpens}. But in $\tau_\ast = \{\emptyset, \{1\}\}$ the intersection of two open subsets is empty precisely if at least one of them is empty, hence $\phi(U_1) = \emptyset$ or $\phi(U_2) = \emptyset$. But this means that $U_1 \subset U_{\emptyset}(\phi)$ or $U_2 \subset U_{\emptyset}(\phi)$, as claimed. Now according to \href{irreducible+closed+subspace#OpenSubsetVersionOfClosedIrreducible}{this prop.}, the condition $(\ast)$ identifies the [[complement]] $X \backslash U_{\emptyset}(\phi)$ as an [[irreducible closed subspace]] of $(X,\tau)$. Conversely, given an irreducible closed subset $X \backslash U_0$, define $\phi$ by \begin{displaymath} \phi \;\colon\; U \mapsto \left\{ \itexarray{ \emptyset & \vert \, \text{if} \, U \subset U_0 \\ \{1\} & \vert \, \text{otherwise} } \right. \,. \end{displaymath} This does preserve \begin{enumerate}% \item arbitrary unions because $\phi(\underset{i}{\cup} U_i) = \{\emptyset\}$ precisely if $\underset{i}{\cup}U_i \subset U_0$ which is the case precisely if all $U_i \subset U_0$, which means that all $\phi(U_i) = \emptyset$ and because $\underset{i}{\cup}\emptyset = \emptyset$; while $\phi(\underset{i}{\cup}U_1) = \{1\}$ as soon as one of the $U_i$ is not contained in $U_0$, which means that one of the $\phi(U_i) = \{1\}$ which means that $\underset{i}{\cup} \phi(U_i) = \{1\}$; \item finite intersections because if $U_1 \cap U_2 \subset U_0$, then by $(\ast)$ $U_1 \in U_0$ or $U_2 \in U_0$, whence $\phi(U_1) = \emptyset$ or $\phi(U_2) = \emptyset$, whence with $\phi(U_1 \cap U_2) = \emptyset$ also $\phi(U_1) \cap \phi(U_2) = \emptyset$; while if $U_1 \cap U_2$ is not contained in $U_0$ then neither $U_1$ nor $U_2$ is contained in $U_0$ and hence with $\phi(U_1 \cap U_2) = \{1\}$ also $\phi(U_1) \cap \phi(U_2) = \{1\} \cap \{1\} = \{1\}$. \end{enumerate} Hence this is indeed a frame homomorphism $\tau_X \to \tau_\ast$. Finally, it is clear that these two operations are inverse to each other. \end{proof} \begin{proof} of prop. \ref{FrameMorphismsBetweenOpensOfSoberSpaces} We first consider the special case of frame homomorphisms of the form \begin{displaymath} \tau_\ast \longleftarrow \tau_X \;\colon\; \phi \end{displaymath} and show that these are in bijection to the underlying set $X$, identified with the continuous functions $\ast \to (X,\tau)$. By lemma \ref{FrameHomomorphismsToPointAreIrrClSub}, the frame homomorphisms $\phi \colon \tau_X \to \tau_\ast$ are identified with the irreducible closed subspaces $X \backslash U_\emptyset(\phi)$ of $(X,\tau_X)$. Therefore by assumption of [[sober topological space|sobriety]] of $(X,\tau)$ there is a unique point $x \in X$ with $X \backslash U_{\emptyset} = Cl(\{x\})$. In particular this means that for $U_x$ an open neighbourhood of $x$, then $U_x$ is not a subset of $U_\emptyset(\phi)$, and so it follows that $\phi(U_x) = \{1\}$. In conclusion we have found a unique $x \in X$ such that \begin{displaymath} \phi \;\colon\; U \mapsto \left\{ \itexarray{ \{1\} & \vert \,\text{if}\, x \in U \\ \emptyset & \vert \, \text{otherwise} } \right. \,. \end{displaymath} This is precisely the [[inverse image]] function of the continuous function $\ast \to X$ which sends $1 \mapsto x$. Hence this establishes the bijection between frame homomorphisms of the form $\tau_\ast \longleftarrow \tau_X$ and continuous functions of the form $\ast \to (X,\tau)$. With this it follows that a general frame homomorphism of the form $\tau_X \overset{\phi}{\longleftarrow} \tau_Y$ defines a function of sets $X \overset{f}{\longrightarrow} Y$ by [[composition]]: \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y \\ (\tau_\ast \leftarrow \tau_X) &\mapsto& (\tau_\ast \leftarrow \tau_X \overset{\phi}{\longleftarrow} \tau_Y) } \,. \end{displaymath} By the previous analysis, an element $U_Y \in \tau_Y$ is sent to $\{1\}$ under this composite precisely if the corresponding point $\ast \to X \overset{f}{\longrightarrow} Y$ is in $U_Y$, and similarly for an element $U_X \in \tau_X$. It follows that $\phi(U_Y) \in \tau_X$ is precisely that subset of points in $X$ which are sent by $f$ to elements of $U_Y$, hence that $\phi = f^{-1}$ is the [[pre-image]] function of $f$. Since $\phi$ by definition sends open subsets of $Y$ to open subsets of $X$, it follows that $f$ is indeed a continuous function. This proves the claim in generality. \end{proof} \hypertarget{Reflection}{}\subsubsection*{{Soberification reflection}}\label{Reflection} The [[category]] of sober spaces is [[reflective subcategory|reflective]] in the category of all topological spaces; the [[left adjoint]] is called the \textbf{soberification}. This reflection is also induced by the [[idempotent adjunction]] between spaces and [[locales]]; thus sober spaces are precisely those spaces that are the spaces of points of some [[locale]], and the [[category]] of sober spaces is [[equivalence of categories|equivalent]] to the category of [[locales with enough points]]. We now say this in detail. Recall again the [[point]] topological space $\ast \coloneqq ( \{1\}, \tau_\ast = \left\{ \emptyset, \{1\}\right\} )$. \begin{defn} \label{SoberificationConstruction}\hypertarget{SoberificationConstruction}{} Let $(X,\tau)$ be a [[topological space]]. Define $S X$ to be the set \begin{displaymath} S X \coloneqq Hom_{Frame}( \tau_X, \tau_\ast ) \end{displaymath} of [[frame]] [[homomorphisms]] from the [[frame of opens]] of $X$ to that of the point. Define a [[topological space|topology]] $\tau_{S X} \subset P(S X)$ on this set by declaring it to have one element $\tilde U$ for each element $U \in \tau_X$ and given by \begin{displaymath} \tilde U \;\coloneqq\; \left\{ \phi \in S X \,\vert\, \phi(U) = \{1\} \right\} \,. \end{displaymath} Consider the function \begin{displaymath} \itexarray{ X &\overset{s_X}{\longrightarrow}& S X \\ x &\mapsto& (const_x)^{-1} } \end{displaymath} which sends an element $x \in X$ to the function which assigns [[inverse images]] of the [[constant function]] $const_x \;\colon\; \{1\} \to X$ on that element. \end{defn} \begin{lemma} \label{SoberificationConstructionWellDefined}\hypertarget{SoberificationConstructionWellDefined}{} The construction $(S X, \tau_{S X})$ in def. \ref{SoberificationConstruction} is a [[topological space]], and the function $s_X \colon X \to S X$ is a [[continuous function]] \begin{displaymath} s_X \colon (X, \tau_X) \longrightarrow (S X, \tau_{S X}) \end{displaymath} \end{lemma} \begin{proof} To see that $\tau_{S X} \subset P(S X)$ is closed under arbitrary unions and finite intersections, observe that the function \begin{displaymath} \itexarray{ \tau_X &\overset{\widetilde{(-)}}{\longrightarrow}& \tau_{S X} \\ U &\mapsto& \tilde U } \end{displaymath} in fact preserves arbitrary unions and finite intersections. Whith this the statement follows by the fact that $\tau_X$ is closed under these operations. To see that $\widetilde{(-)}$ indeed preserves unions, observe that (e.g. \hyperlink{Johnstone82}{Johnstone 82, II 1.3 Lemma}) \begin{displaymath} \begin{aligned} p \in \underset{i \in I}{\cup} \widetilde{U_i} \; & \Leftrightarrow \underset{i \in I}{\exists} p(U_i) = \{1\} \\ & \Leftrightarrow \underset{i \in I}{\cup} p(U_i) = \{1\} \\ & \Leftrightarrow p\left(\underset{i \in I}{\cup} U_i\right) = \{1\} \\ & \Leftrightarrow p \in \widetilde{ \underset{i \in I}{\cup} U_i } \end{aligned} \,, \end{displaymath} where we used that the frame homomorphism $p \colon \tau_X \to \tau_\ast$ preserves unions. Similarly for intersections, now with $I$ a [[finite set]]: \begin{displaymath} \begin{aligned} p \in \underset{i \in I}{\cap} \widetilde{U_i} \; & \Leftrightarrow \underset{i \in I}{\forall} p(U_i) = \{1\} \\ & \Leftrightarrow \underset{i \in I}{\cap} p(U_i) = \{1\} \\ & \Leftrightarrow p\left(\underset{i \in I}{\cap} U_i\right) = \{1\} \\ & \Leftrightarrow p \in \widetilde{ \underset{i \in I}{\cap} U_i } \end{aligned} \,, \end{displaymath} where now we used that the frame homomorphism $p$ preserves finite intersections. To see that $s_X$ is continuous, observe that $s_X^{-1}(\tilde U) = U$, by construction. \end{proof} \begin{lemma} \label{UnitIntoSXDetectsT0AndSoberity}\hypertarget{UnitIntoSXDetectsT0AndSoberity}{} For $(X, \tau_X)$ a [[topological space]], the function $s_X \colon X \to S X$ from def. \ref{SoberificationConstruction} is \begin{enumerate}% \item an [[injection]] precisely if $X$ is [[separation axiom|T0]]; \item a [[bijection]] precisely if $X$ is sober. In this case $s_X$ is in fact a [[homeomorphism]]. \end{enumerate} \end{lemma} \begin{proof} By lemma \ref{FrameHomomorphismsToPointAreIrrClSub} there is an identification $S X \simeq IrrClSub(X)$ and via this $s_X$ is identified with the map $x \mapsto Cl(\{x\})$. Hence the second statement follows by definition, and the first statement by \href{separation+axioms#T0InTermsOfClosureOfPoints}{this prop.}. That in the second case $s_X$ is in fact a homeomorphism follows from the definition of the opens $\tilde U$: they are identified with the opens $U$ in this case (\ldots{}expand\ldots{}). \end{proof} \begin{lemma} \label{SoberificationIsIndeedSober}\hypertarget{SoberificationIsIndeedSober}{} For $(X,\tau)$ a [[topological space]], then the topological space $(S X, \tau_{S X})$ from def. \ref{SoberificationConstruction}, lemma \ref{SoberificationConstructionWellDefined} is sober. \end{lemma} (e.g. \hyperlink{Johnstone82}{Johnstone 82, lemma II 1.7}) \begin{proof} Let $S X \backslash \tilde U$ be an [[irreducible closed subspace]] of $(S X, \tau_{S X})$. We need to show that it is the [[topological closure]] of a unique element $\phi \in S X$. Observe first that also $X \backslash U$ is irreducible. To see this use \href{irreducible+closed+subspace#OpenSubsetVersionOfClosedIrreducible}{this prop.}, saying that irreducibility of $X \backslash U$ is equivalent to $U_1 \cap U_2 \subset U \Rightarrow (U_1 \subset U) or (U_2 \subset U)$. But if $U_1 \cap U_2 \subset U$ then also $\tilde U_1 \cap \tilde U_2 \subset \tilde U$ (as in the \hyperlink{ProofOfSoberificationConstructionWellDefined}{proof} of lemma \ref{SoberificationConstructionWellDefined}) and hence by assumption on $\tilde U$ it follows that $\tilde U_1 \subset \tilde U$ or $\tilde U_2 \subset \tilde U$. By lemma \ref{FrameHomomorphismsToPointAreIrrClSub} this in turn implies $U_1 \subset U$ or $U_2 \subset U$. In conclusion, this shows that also $X \backslash U$ is irreducible . By lemma \ref{FrameHomomorphismsToPointAreIrrClSub} this irreducible closed subspace corresponds to a point $p \in S X$. By that same lemma, this frame homomorphism $p \colon \tau_X \to \tau_\ast$ takes the value $\emptyset$ on all those opens which are inside $U$. This means that the [[topological closure]] of this point is just $S X \backslash \tilde U$. This shows that there exists at least one point of which $X \backslash \tilde U$ is the topological closure. It remains to see that there is no other such point. So let $p_1 \neq p_2 \in S X$ be two distinct points. This means that there exists $U \in \tau_X$ with $p_1(U) \neq p_2(U)$. Equivalently this says that $\tilde U$ contains one of the two points, but not the other. This means that $(S X, \tau_{S X})$ is [[separation axiom|T0]]. By \href{separation+axioms#T0InTermsOfClosureOfPoints}{this prop.} this is equivalent to there being no two points with the same topological closure. \end{proof} \begin{prop} \label{}\hypertarget{}{} For $(X, \tau_X)$ any [[topological space]], for $(Y,\tau_Y^{sob})$ a sober topological space, and for $f \colon (X, \tau_X) \longrightarrow (Y, \tau_Y)$ a [[continuous function]], then it factors uniquely through the soberification $s_X \colon (X, \tau_X) \longrightarrow(S X, \tau_{S X})$ from def. \ref{SoberificationConstruction}, lemma \ref{SoberificationConstructionWellDefined} \begin{displaymath} \itexarray{ (X, \tau_X) &\overset{f}{\longrightarrow}& (Y, \tau_Y^{sob}) \\ {}^{\mathllap{s_X}}\downarrow & \nearrow_{\exists !} \\ (S X , \tau_{S X}) } \,. \end{displaymath} \end{prop} \begin{proof} By the construction in def. \ref{SoberificationConstruction}, we find that the outer part of the following square [[commuting square|commutes]]: \begin{displaymath} \itexarray{ (X, \tau_X) &\overset{f}{\longrightarrow}& (Y, \tau^{sob}_Y) \\ {}^{\mathllap{s_X}}\downarrow & \nearrow& \downarrow^{\mathrlap{s_{S X}}} \\ (S X, \tau_{S X}) &\underset{S f}{\longrightarrow}& (S S X, \tau_{S S X}) } \,. \end{displaymath} By lemma \ref{SoberificationIsIndeedSober} and lemma \ref{UnitIntoSXDetectsT0AndSoberity}, the right vertical morphism $s_{S X}$ is an isomorphism (a [[homeomorphism]]), hence has an [[inverse morphism]]. This defines the diagonal morphism, which is the desired factorization. To see that this factorization is unique, consider two factorizations $\tilde f, \overline{f} \colon \colon (S X, \tau_{S X}) \to (Y, \tau_Y^{sob})$ and apply the soberification construction once more to the triangles \begin{displaymath} \itexarray{ (X, \tau_X) &\overset{f}{\longrightarrow}& (Y, \tau_Y^{sob}) \\ {}^{\mathllap{s_X}}\downarrow & \nearrow_{ \tilde f, \overline{f}} \\ (S X , \tau_{S X}) } \phantom{AAA} \mapsto \phantom{AAA} \itexarray{ (S X, \tau_{S X}) &\overset{S f}{\longrightarrow}& (Y, \tau_Y^{sob}) \\ {}^{\simeq}\downarrow & \nearrow_{ \tilde f, \overline{f}} \\ (S X , \tau_{S X}) } \,. \end{displaymath} Here on the right we used again lemma \ref{UnitIntoSXDetectsT0AndSoberity} to find that the vertical morphism is an isomorphism, and that $\tilde f$ and $\overline{f}$ do not change under soberification, as they already map between sober spaces. But now that the left vertical morphism is an isomorphism, the commutativity of this triangle for both $\tilde f$ and $\overline{f}$ implies that $\tilde f = \overline{f}$. \end{proof} \hypertarget{enough_points}{}\subsubsection*{{Enough points}}\label{enough_points} A topological space has enough points in the sense of def. \ref{EnoughPointsOfATopologicalSpace} if and only if its $T_0$ quotient is sober. The category of topological spaces with enough points is a [[reflective subcategory]] of the category [[Top]] of all topological spaces, and a topological space is [[T0]] iff this reflection is sober. \hypertarget{examples_and_nonexamples}{}\subsection*{{Examples and Non-examples}}\label{examples_and_nonexamples} \begin{itemize}% \item With [[classical logic]], every [[Hausdorff space]] is sober, but this can fail [[constructive mathematics|constructively]]. See at \emph{[[Hausdorff implies sober]]}. Since the Hausdorff condition implies the $T_1$ [[separation axiom]], this means that ([[classical logic|classically]]) there is a large [[intersection]] of the [[classes]] of $T_1$-topological spaces and sober topological spaces. But neither class is contained in the other, as the following counter-examples show: \begin{itemize}% \item The [[Sierpinski space]] is sober, but not $T_1$. \item The [[cofinite topology]] on a non-[[finite set]] is $T_1$ but not sober. \end{itemize} \item The topological space underlying any [[scheme]] is sober. See at \emph{[[schemes are sober]]}. \end{itemize} Further examples of spaces that are \emph{not} sober includes the following: \begin{itemize}% \item Any nontrivial [[indiscrete space]] is not sober, since it is not $T_0$. \end{itemize} More interestingly: \begin{itemize}% \item For $R$ a [[commutative ring]], then the space $R^2$ with the [[Zariski topology]] is $T_1$ but not sober, since every subvariety is an irreducible closed set which is not the [[topological closure|closure]] of a point. Its \emph{soberification} is, unsurprisingly, the [[scheme]] $Spec(R[x,y])$, which contains ``generic points'' whose closures are the subvarieties. \end{itemize} The following non-example shows that sobriety is not a hereditary separation property, i.e., [[topological subspaces]] of sober spaces need not be sober: \begin{itemize}% \item The [[Alexandroff topology]] on a [[poset]] is also not, in general, sober. For instance, if $P$ is the infinite binary tree (the set of finite $\{0,1\}$-words ([[lists]]) with the ``extends'' preorder), then the soberification of its Alexandroff topology is [[Wilson space]], the space of finite or infinite $\{0,1\}$-words ([[streams]]). \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[nice topological space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Francis Borceux]], volume 3, section 1.9 of \emph{[[Handbook of Categorical Algebra]]}, Cambridge University Press (1994) \item [[Peter Johnstone]], section II.1, from II.1 on in \emph{[[Stone Spaces]]}, Cambridge Studies in Advanced Mathematics \textbf{3}, Cambridge University Press 1982. xxi+370 pp. \href{http://www.ams.org/mathscinet-getitem?mr=698074}{MR85f:54002}, reprinted 1986. \item [[Saunders MacLane]], [[Ieke Moerdijk]], around definition IX.3.2 in \emph{[[Sheaves in Geometry and Logic]]} \item Sober spaces in the \href{http://topology.jdabbs.com/properties/73}{$\pi$-base}. \end{itemize} [[!redirects sober]] [[!redirects sober topological space]] [[!redirects sober topological spaces]] [[!redirects sober topology]] [[!redirects sober topologies]] [[!redirects sober space]] [[!redirects sober spaces]] [[!redirects sobrification]] [[!redirects sobrifications]] [[!redirects soberification]] [[!redirects soberifications]] [[!redirects sober reflection]] [[!redirects sober reflections]] [[!redirects soberification reflection]] [[!redirects soberification reflections]] [[!redirects topological space with enough points]] [[!redirects topological spaces with enough points]] \end{document}