\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{solid functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{left_adjoint}{Left adjoint}\dotfill \pageref*{left_adjoint} \linebreak \noindent\hyperlink{lifting_of_colimits}{Lifting of colimits}\dotfill \pageref*{lifting_of_colimits} \linebreak \noindent\hyperlink{lifting_of_model_structures}{Lifting of model structures}\dotfill \pageref*{lifting_of_model_structures} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{solid functor} (also called a \emph{semi-topological functor}) is a [[forgetful functor]] $U\colon A\to X$ for which the structure of an $A$-object can be universally lifted along [[sinks]]. One can also say that $U$ has not just a [[left adjoint]] but all possible ``relative'' left adjoints. When $U$ is solid, [[colimit]]s in $A$ can be constructed in a natural way out of colimits in $X$, and $A$ inherits strong cocompleteness properties from $X$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $U\colon A\to X$ be a [[faithful functor]]. A \textbf{$U$-structured sink} is a [[sink]] in $X$ of the form $(U a_i \overset{f_i}{\to} x)$. Note that the indexing family $i\in I$ need not be a [[set]], it can be a [[proper class]]. A \textbf{[[semi-final lift]]} of such a $U$-structured sink consists of a morphism $x\overset{g}{\to} U b$ in $X$ such that \begin{enumerate}% \item Every composite $g \circ f_i\colon U a_i \to U b$ is in the image of $U$, i.e. is of the form $U(\tilde{g})$ for some $\tilde{g}\colon a_i\to b$ (necessarily unique, since $U$ is faithful), and \item $g$ is [[initial object|initial]] with this property, i.e. for any other morphism $x \overset{g'}{\to} U b'$ such that each $g' \circ f_i$ is in the image of $U$, there exists a unique $h\colon b\to b'$ in $A$ such that $g' = U(h) \circ g$. \end{enumerate} Finally, $U$ is called \textbf{solid} if every $U$-structured sink has a semi-final lift. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any [[topological functor]] is solid. Indeed, a functor $U$ is topological just when it has final lifts for all $U$-structured sinks, where a \emph{final lift} is a semi-final lift for which $g$ is an isomorphism. \item Any [[monadic functor]] into $Set$ is solid. \item A [[fully faithful functor]] is solid if and only if it has a left adjoint. \item If $U\colon A\to X$ is faithful and has a left adjoint, and moreover $A$ is [[cocomplete category|cocomplete]] and [[well-powered category|well-copowered]], then $U$ is solid. \item For $C$ a [[cofibrantly generated model category]] with monic generating cofibrations, the forgetful functor from [[model structure on algebraic fibrant objects|algebraic fibrant objects]] to $C$ is solid. See there for details. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{left_adjoint}{}\subsubsection*{{Left adjoint}}\label{left_adjoint} For any $x\in X$, the empty family of morphisms into $x$ is a $U$-structured sink, and a semi-final lift for this family is a $x\to U b$. Therefore, if $U$ is solid, then it has a [[left adjoint]]. \hypertarget{lifting_of_colimits}{}\subsubsection*{{Lifting of colimits}}\label{lifting_of_colimits} Suppose that $U\colon A\to X$ is solid and let $F\colon D\to A$ be a [[diagram]] such that $U F$ has a [[colimit]] in $X$, consisting of a [[cocone]] $U F d_i \to c$. Let $c \to U e$ be a semi-final lift of this $U$-structured sink, for which we have induced morphisms $F d_i \to e$ in $A$. Since $U$ is faithful, these morphisms are a cocone under $F$, and the semi-finality makes it into a colimit in $A$. Therefore, if $A$ is solid over $X$, then it admits all colimits which $X$ does. Moreover, if we understand colimits in $X$, and we understand the semi-final lifts, then we understand colimits in $A$. In particular, if $X$ is [[cocomplete category|cocomplete]], then so is $A$. In fact, more is true: if $X$ is [[total category|total]], then so is $A$. \hypertarget{lifting_of_model_structures}{}\subsubsection*{{Lifting of model structures}}\label{lifting_of_model_structures} The standard \emph{[[transferred model structure|transfer theorem]]} for [[model category|model structures]] states that if $U\colon A\to X$ is a functor such that \begin{enumerate}% \item $U$ has a left adjoint $F$, \item $U$ is [[accessible functor|accessible]], i.e. preserves $\kappa$-[[filtered colimits]] for sufficiently large $\kappa$, \item $X$ has a [[cofibrantly generated model category|cofibrantly generated model structure]], and \item [[transfinite composition|Transfinite composites]] of [[pushouts]] of images under $F$ of generating acyclic cofibrations in $X$ become weak equivalences after applying $U$ (the \emph{acyclicity condition}), \end{enumerate} then $A$ has a cofibrantly generated model structure in which the weak equivalences and fibrations are created by $U$. Using an argument of (\hyperlink{Nikolaus}{Nikolaus}) we can show: \begin{utheorem} Let $U\colon A\to X$ be an accessible solid functor, and assume that $X$ has a cofibrantly generated model structure and the following acyclicity condition: \begin{itemize}% \item If $F\colon D\to A$ is a [[filtered diagram]] and $U(F(d_i)) \to x$ is a cocone under $U\circ F$, each of whose legs is an acyclic cofibration in $X$, then the semifinal lift $x\to U(b)$ of this $U$-structured sink is also an acyclic cofibration. \end{itemize} Then the transfer theorem applies, so that $A$ has a cofibrantly generated model structure in which the weak equivalences and fibrations are created by $U$. \end{utheorem} \begin{proof} We have remarked above that $U$ has a left adjoint, and we assumed it to be accessible, so it remains to show that the given acyclicity condition implies the standard one. We first show that [[pushout]]s in $A$ of images under $F$ of generating acyclic cofibrations become acyclic cofibrations (not just weak equivalences) upon applying $U$. Let $i\colon x\to y$ be a generating acyclic cofibration, and \begin{displaymath} \itexarray{F(x) & \overset{f}{\to} & a\\ ^{F (i)}\downarrow \\ F(y)} \end{displaymath} a diagram in $A$ of which we would like to take the pushout. Consider the pushout of the corresponding diagram in $X$: \begin{displaymath} \itexarray{x & \overset{\bar{f}}{\to} & U(a)\\ ^{i}\downarrow && \downarrow^g\\ y& \underset{h}{\to} & U(a) \sqcup_{x} y.} \end{displaymath} Since $X$ is a model category, $g$ is an acyclic cofibration. Therefore, if $U(a) \sqcup_x y \overset{k}{\to} U(b)$ is a semifinal lift of the singleton sink $\{g\}$, by assumption, $k$ is also an acyclic cofibration and thus so is the composite $U(a)\to U(b)$. But it is straightforward to verify that in fact, the map $a\to b$ of which this is the image (which exists by assumption) gives a pushout diagram in $A$: \begin{displaymath} \itexarray{F(x) & \overset{f}{\to} & a\\ ^{F(i)}\downarrow && \downarrow\\ F(y) & \underset{\bar{h}}{\to} & b.} \end{displaymath} If $U$ is not just accessible but [[finitary functor|finitary]], then it preserves all transfinite composites, so any transfinite composite of such pushouts in $A$ maps to a transfinite composite in $X$, and we know that transfinite composites of acyclic cofibrations in $X$ are acyclic cofibrations, so the desired acyclicity condition follows. In general, we can argue as follows: given a transfinite sequence $a_0\to a_1\to\dots$ in $A$ of such pushouts, its colimit (= composition) can be constructed as above by forgetting down to $X$, taking the colimit there, and then taking the semifinal lift. But since acyclic cofibrations in $X$ are closed under transfinite composites, the legs of the colimiting cocone in $X$ are acyclic cofibrations. Hence by the assumed acyclicity condition, so is the semifinal lift, and hence (by composition) so are the images in $X$ of the legs of the colimiting cone in $A$. This completes the proof. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Walter Tholen]], \emph{Semitopological functors. I} \item and others\ldots{} \end{itemize} The example of algebraic fibrant objects and the argument entering the above \hyperlink{LiftingTheorem}{lifting theorem} appears in \begin{itemize}% \item [[Thomas Nikolaus]], \emph{Algebraic models for higher categories} (\href{http://arxiv.org/abs/1003.1342}{arXiv}) \end{itemize} See also [[model structure on algebraic fibrant objects]]. [[!redirects solid functors]] [[!redirects semi-topological functor]] [[!redirects semitopological functor]] [[!redirects semi-topological functors]] [[!redirects semitopological functors]] \end{document}