\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{solid topos} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{super_formal_smooth_sets}{Super formal smooth sets}\dotfill \pageref*{super_formal_smooth_sets} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{[[solid topos]]} is meant to be a characterization of \emph{[[gros toposes]]} which further refines that of [[elastic toposes]] and [[cohesive toposes]]. The idea is that we may consistently regard the [[objects]] of such toposes as [[generalized spaces]] for some flavor of [[geometry]], and that the axioms on the topos determine aspects of the geometric nature of these [[generalized spaces]], as follows: \begin{tabular}{l|l} $\phantom{A}$[[gros topos]]$\phantom{A}$&$\phantom{A}$[[generalized spaces]] obey\ldots{}$\phantom{A}$\\ \hline $\phantom{A}$[[cohesion]]&$\phantom{A}$principles of [[differential topology]]$\phantom{A}$\\ $\phantom{A}$[[elastic topos&elasticity]]\\ $\phantom{A}$[[solid topos&solidity]]$\phantom{A}$\\ \end{tabular} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SuperDifferentialCohesion}\hypertarget{SuperDifferentialCohesion}{} \textbf{([[solid topos]])} Let $\mathbf{H}_{bos}$ be an [[elastic topos]] (\href{geometry+of+physics+--+categories+and+toposes#DifferentialCohesion}{this Def.}) over a [[cohesive topos]] $\mathbf{H}_{red}$ (\href{geometry+of+physics+--+categories+and+toposes#CohesiveTopos}{this Def.}). Then a \emph{solid topos} or \emph{super-differentially cohesive topos} over $\mathbf{H}_{bos}$ is a [[sheaf topos]] $\mathbf{H}$, which is \begin{enumerate}% \item a [[cohesive topos]] over [[Set]] (\href{geometry+of+physics+--+categories+and+toposes#CohesiveTopos}{this Def.}), \item an [[elastic topos]] over $\mathbf{H}_{red}$ (\href{geometry+of+physics+--+categories+and+toposes#DifferentialCohesion}{this Def.}). \item equipped with a [[adjoint quadruple|quadruple]] of [[adjoint functors]] (\href{geometry+of+physics+--+categories+and+toposes#AdjointFunctorsInTermsOfNaturalBijectionOfHomSets}{this Def.}) to $\mathbf{H}_{bos}$ of the form \begin{displaymath} \mathbf{H}_{bos} \itexarray{ \overset{\phantom{A} even \phantom{A} }{\longleftarrow} \\ \overset{\phantom{AA} \iota_{sup} \phantom{AA} }{\hookrightarrow} \\ \overset{\phantom{AA} \Pi_{sup} \phantom{AA} }{\longleftarrow} \\ \overset{\phantom{AA} Disc_{sup} \phantom{AA} }{\hookrightarrow} } \mathbf{H} \end{displaymath} hence with $\iota_{sup}$ and $Disc_{sup}$ being [[fully faithful functors]]. \end{enumerate} \end{defn} \begin{lemma} \label{ProgressionOfSubcategoriesOfSolidTopos}\hypertarget{ProgressionOfSubcategoriesOfSolidTopos}{} \textbf{(progression of ([[coreflective subcategory|co-]])[[reflective subcategories]] of [[solid topos]])} Let $\mathbf{H}$ be a [[solid topos]] (Def. \ref{SuperDifferentialCohesion}) over an [[elastic topos]] $\mathbf{H}_{red}$: \begin{displaymath} Set \itexarray{ \overset{\phantom{A} \Pi_{red} \phantom{A} }{\longleftarrow} \\ \overset{\phantom{A} Disc_{red} \phantom{A} }{\hookrightarrow} \\ \overset{\phantom{A} \Gamma_{red} \phantom{A} }{\longleftarrow} \\ \overset{\phantom{A} coDisc_{red} \phantom{A} }{\hookrightarrow} } \mathbf{H}_{red} \itexarray{ \overset{\phantom{AA} \iota_{inf} \phantom{AA} }{\hookrightarrow} \\ \overset{\phantom{AA} \Pi_{inf} \phantom{AA} }{\longleftarrow} \\ \overset{\phantom{AA} Disc_{inf} \phantom{AA} }{\hookrightarrow} \\ \overset{\phantom{AA} \Gamma_{inf} \phantom{AA} }{\longleftarrow} \\ \phantom{A} \\ \phantom{A \atop A} } \mathbf{H}_{bos} \itexarray{ \overset{\phantom{AA} even \phantom{AA} }{\longleftarrow} \\ \overset{\phantom{AA} \iota_{sup} \phantom{AA} }{\hookrightarrow} \\ \overset{\phantom{AA} \Pi_{sup} \phantom{AA} }{\longleftarrow} \\ \overset{\phantom{AA} Disc_{sup} \phantom{AA} }{\hookrightarrow} \\ \overset{\phantom{AA} \Gamma_{sup} \phantom{AA} }{\longleftarrow} \\ \phantom{A} \\ \phantom{A \atop A} \\ \phantom{A \atop A} } \mathbf{H} \end{displaymath} Then these adjoint functors arrange and decompose as shown in the following [[diagram]]: Here the composite [[adjoint quadruple]] \begin{displaymath} Set \itexarray{ \overset{\Pi \simeq \Pi_{red}\Pi_{inf} \Pi_{sup} }{\longleftarrow} \\ \overset{Disc = Disc_{sup} Disc_{inf} Disc_{red}}{\hookrightarrow} \\ \overset{\Gamma = \Gamma_{sup} \Gamma_{inf} \Gamma_{red} }{\longleftarrow} \\ \overset{\phantom{AA} coDisc \phantom{AA} }{\hookrightarrow} } \mathbf{H} \end{displaymath} exhibits the [[cohesion]] of $\mathbf{H}$ over [[Set]], and the composite adjoint quadruple \begin{displaymath} \mathbf{H}_{red} \itexarray{ \overset{\iota_{sup} \iota_{inf}}{\hookrightarrow} \\ \overset{\Pi_{inf} \Pi_{sup} }{\longleftarrow} \\ \overset{Disc_{inf} Disc_{red}}{\hookrightarrow} \\ \overset{ \Gamma_{sup} }{\longleftarrow} } \mathbf{H} \end{displaymath} exhibits the [[elastic topos|elasticity]] of $\mathbf{H}$ over $\mathbf{H}_{red}$. \end{lemma} \begin{proof} As in the proof of \href{geometry+of+physics+--+categories+and+toposes#ProgressionOfSubcategoriesOfElasticTopos}{this Prop.}, this is immediate by the essential uniqueness of adjoints (\href{geometry+of+physics+--+categories+and+toposes#UniquenessOfAdjoints}{this Prop.}) and of the [[global section]]-[[geometric morphism]] (\href{geometry+of+physics+--+categories+and+toposes#GlobalSectionsGeometricMorphism}{this Example}). \end{proof} \begin{defn} \label{SuperDiffCohesiveModalities}\hypertarget{SuperDiffCohesiveModalities}{} \textbf{([[adjoint modalities]] on [[solid topos]])} Given a [[solid topos]] $\mathbf{H}$ over $\mathbf{H}_{bos}$ (Def. \ref{SuperDifferentialCohesion}), [[composition]] of the functors in Lemma \ref{ProgressionOfSubcategoriesOfSolidTopos} yields, via \href{geometry+of+physics+--+categories+and+toposes#ModalOperatorsEquivalentToReflectiveSubcategories}{this Prop.}, the following [[adjoint modalities]] (\href{geometry+of+physics+--+categories+and+toposes#AdjointModality}{this Def.}) \begin{displaymath} \rightrightarrows \;\dashv\; \rightsquigarrow \;\dashv\; Rh \;\;\colon\;\; \mathbf{H} \itexarray{ \overset{ \rightrightarrows \;\coloneqq\; \iota_{sup} \circ even }{\longleftarrow} \\ \overset{\rightsquigarrow \;\coloneqq\; \iota_{sup} \circ \Pi_{sup} }{\longrightarrow} \\ \overset{ Rh \;\coloneqq\; Disc_{sup} \circ \Pi_{sup} }{\longleftarrow} } \mathbf{H} \,. \end{displaymath} Since $\iota_{sup}$ and $Disc_{sup}$ are [[fully faithful functors]] by assumption, these are ([[comodal operator|co-]])[[modal operators]] (\href{geometry+of+physics+--+categories+and+toposes#ModalOperator}{this Def.}) on the [[cohesive topos]], by \href{geometry+of+physics+--+categories+and+toposes#ModalOperatorsEquivalentToReflectiveSubcategories}{this Prop.}. We pronounce these as follows: \begin{tabular}{l|l|l} $\phantom{A}$ [[fermionic modality]] $\phantom{A}$&$\phantom{A}$ [[bosonic modality]] $\phantom{A}$&$\phantom{A}$ [[rheonomy modality]] $\phantom{A}$\\ \hline $\phantom{A}$ $\rightrightarrows \;\coloneqq\; \iota_{sup} \circ even$ $\phantom{A}$&$\phantom{A}$ $\rightsquigarrow \;\coloneqq\; \iota_{sup} \circ \Pi_{sup}$ $\phantom{A}$&$\phantom{A}$ $Rh \;\coloneqq\; Disc_{sup} \circ \Pi_{sup}$ $\phantom{A}$\\ \end{tabular} and we refer to the corresponding [[modal objects]] (\href{geometry+of+physics+--+categories+and+toposes#ModalObjects}{this Def.}) as follows: \begin{itemize}% \item a $\rightsquigarrow$-[[comodal object]] \begin{displaymath} \overset{\rightsquigarrow}{X} \underoverset{\simeq}{\epsilon^\rightsquigarrow_X}{\longrightarrow} X \end{displaymath} is called a \emph{[[bosonic object]]}; \item a $Rh$-[[modal object]] \begin{displaymath} X \underoverset{\simeq}{ \eta^{Rh}_X}{\longrightarrow} Rh X \end{displaymath} is called a \emph{rheonomic object}; \end{itemize} \end{defn} \begin{prop} \label{ProgressionOfModalitiesOnElasticTopos}\hypertarget{ProgressionOfModalitiesOnElasticTopos}{} \textbf{(progression of [[adjoint modalities]] on [[solid topos]])} Let $\mathbf{H}$ be a [[solid topos]] (Def. \ref{SuperDifferentialCohesion}) and consider the [[adjoint modalities]] which it inherits \begin{enumerate}% \item for being a [[cohesive topos]], from \href{geometry+of+physics+--+categories+and+toposes#CohesiveModalities}{this Def.}, \item for being an [[elastic topos]], from \href{geometry+of+physics+--+categories+and+toposes#DiffCohesiveModalities}{this Def.}, \item for being a [[solid topos]], from Def. \ref{SuperDiffCohesiveModalities}: \end{enumerate} \begin{tabular}{l|l|l} $\phantom{A}$ [[shape modality]] $\phantom{A}$&$\phantom{A}$ [[flat modality]] $\phantom{A}$&$\phantom{A}$ [[sharp modality]] $\phantom{A}$\\ \hline $\phantom{A}$ $ʃ \;\coloneqq\; Disc \Pi$ $\phantom{A}$&$\phantom{A}$ $\flat \;\coloneqq\; Disc \circ \Gamma$ $\phantom{A}$&$\phantom{A}$ $\sharp \;\coloneqq\; coDisc \circ \Gamma$ $\phantom{A}$\\ &&\\ $\phantom{A}$ \textbf{[[reduction modality]]} $\phantom{A}$&$\phantom{A}$ \textbf{[[infinitesimal shape modality]]} $\phantom{A}$&$\phantom{A}$ \textbf{[[infinitesimal flat modality]]} $\phantom{A}$\\ $\phantom{A}$ $\Re \;\coloneqq\; \iota_{sup} \iota_{inf} \circ \Pi_{inf}\Pi_{sup}$ $\phantom{A}$&$\phantom{A}$ $\Im \;\coloneqq\; Disc_{sup} Disc_{inf} \circ \Pi_{inf} \Pi_{sup}$ $\phantom{A}$&$\phantom{A}$ $\& \;\coloneqq\; Disc_{sup} Disc_{inf} \circ \Gamma_{inf}\Gamma_{sup}$ $\phantom{A}$\\ &&\\ $\phantom{A}$ \textbf{[[fermionic modality]]} $\phantom{A}$&$\phantom{A}$ \textbf{[[bosonic modality]]} $\phantom{A}$&$\phantom{A}$ \textbf{[[rheonomy modality]]} $\phantom{A}$\\ $\phantom{A}$ $\rightrightarrows \;\coloneqq\; \iota_{sup} \circ even$ $\phantom{A}$&$\phantom{A}$ $\rightsquigarrow \;\coloneqq\; \iota_{sup} \circ \Pi_{sup}$ $\phantom{A}$&$\phantom{A}$ $Rh \;\coloneqq\; Disc_{sup} \circ \Pi_{sup}$ $\phantom{A}$\\ \end{tabular} Then these arrange into the following progression, via the [[preorder]] on modalities from \href{geometry+of+physics+--+categories+and+toposes#PreorderOnModalities}{this Def.}: \begin{displaymath} \itexarray{ id &\dashv& id \\ \vee && \vee \\ \rightrightarrows &\dashv& \rightsquigarrow &\dashv& Rh \\ && \vee && \vee \\ && \Re &\dashv& \Im &\dashv& \& \\ && && \vee && \vee \\ && && ʃ &\dashv& \flat &\dashv& \sharp \\ && && && \vee && \vee \\ && && && \emptyset &\dashv& \ast } \end{displaymath} where we are displaying, for completeness, also the [[adjoint modalities]] at the [[bottom]] $\emptyset \dashv \ast$ and the [[top]] $id \dashv id$ (\href{geometry+of+physics+--+categories+and+toposes#InitialAndFinalAdjointModality}{this Example}). \end{prop} \begin{proof} By \href{geometry+of+physics+--+categories+and+toposes#ProgressionOfModalitiesOnElasticTopos}{this Prop.}, it just remains to show that for all [[objects]] $X \in \mathbf{H}$ \begin{enumerate}% \item $\Im X$ is an $Rh$-[[modal object]], hence $Rh \Im X \simeq X$, \item $\Re X$ is a [[bosonic object]], hence $\overset{\rightsquigarrow}{\Re X} \simeq \Re X$. \end{enumerate} The proof is directly analogous to the proof of \href{geometry+of+physics+--+categories+and+toposes#ProgressionOfModalitiesOnElasticTopos}{that Prop.}, now using the decompositions from Lemma \ref{ProgressionOfSubcategoriesOfSolidTopos}: \begin{displaymath} \begin{aligned} Rh \Im & = Disc_{sup} \underset{ \simeq id }{ \underbrace{ \Pi_{sup} \;\; Disc_{sup} } } Disc_{inf} \Pi_{inf} \Pi_{sup} \\ & \simeq Disc_{sup} Disc_{inf} \Pi_{inf} \Pi_{sup} \\ & = \Im \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} \rightsquigarrow \Re & = \iota_{sup} \underset{\simeq id}{\underbrace{ \Pi_{sup} \;\; \iota_{sup}}} \iota_{inf} \Pi_{inf}\Pi_{sub} \\ & \simeq \iota_{sup} \iota_{inf} \Pi_{inf} \Pi_{sub} \\ & \simeq \Re \end{aligned} \end{displaymath} \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{super_formal_smooth_sets}{}\subsubsection*{{Super formal smooth sets}}\label{super_formal_smooth_sets} The [[sheaf topos]] of [[super formal smooth sets]] is solid over that of [[formal smooth sets]], which is [[elastic topos|elastic]] over that of [[smooth sets]], which is [[cohesive topos|cohesive]] over [[Set]]. See \href{geometry+of+physics+--+supergeometry#SuperSmoothSetsSystemOfAdjunctions}{this Prop} at \emph{[[geometry of physics -- supergeometry]]}. [[!redirects super-differentially cohesive topos]] [[!redirects solid model topos]] [[!redirects solid model toposes]] [[!redirects ∞-solid site]] [[!redirects ∞-solid sites]] \end{document}