\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{space and quantity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{Isbell}{Isbell duality: global functions and spectrum}\dotfill \pageref*{Isbell} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{cartesian_test_spaces_diffeological_spaces_and_smooth_algebras}{Cartesian test spaces: diffeological spaces and smooth algebras}\dotfill \pageref*{cartesian_test_spaces_diffeological_spaces_and_smooth_algebras} \linebreak \noindent\hyperlink{higher_space_and_higher_quantity}{Higher space and higher quantity}\dotfill \pageref*{higher_space_and_higher_quantity} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Consider a [[category]] $C$ whose [[objects]] are thought of as \emph{[[spaces]]} of sorts (``test spaces''), and whose [[morphisms]] are regarded as [[homomorphisms]] between these spaces. There is then a general notion of \begin{itemize}% \item \textbf{spaces} modeled on $C$ that are \emph{testable} or \emph{probe-able} by objects of $C$; \item \textbf{quantities} with values in $C$. \end{itemize} Very generally, following \hyperlink{Lawvere86}{Lawvere 86}: \begin{itemize}% \item a generalized [[space]] modeled on the objects of $C$ is a [[presheaf]] on $C$, i.e. a [[functor]] of the form $X \;\colon\; C^{op} \to$ [[Set]]: we think of each such presheaf as being a rule that assigns to each test space $U \in C$ the set $X(U)$ of allowed maps from $U$ \emph{into} the would-be space $X$ (this is really the perspective of [[functorial geometry]], originally due to \href{functorial+geometry#Grothendieck65}{Grothendieck 65}); \item a generalized [[quantity]] modeled on $C$ is a [[copresheaf]] on $C$, i.e. a [[functor]] of the form $A \;\colon\; C \to Set$: we think of each such copresheaf $A$ as a rule that assigns to each test space $U \in C$ the set $A(U)$ of allowed maps \emph{from} the would-be space $A$ into $U$, hence as the collection of $U$-valued \emph{functions} on $A$. Since a function on a point is a ``quantity'', these are generalized quantities. \end{itemize} One may view the \emph{[[Yoneda lemma]]} and the resulting \emph{[[Yoneda embedding]]} as expressing consistency conditions on this perspective: The [[Yoneda lemma]] says that the prescribed rule for how to test a generalized space $X$ by a test space $U$ turns out to coincide with the actual maps from $U$ to $X$, when $U$ is itself regarded as a generalized space, and the [[Yoneda embedding]] says that, as a result, the nature of maps between test spaces does not depend on whether we regard these as test spaces or as generalized spaces. Beyond this \emph{automatic} consistency condition, guaranteed by [[category theory]] itself, typically the admissible (co)presheaves that are regarded as generalized spaces and quantities are required to respect one more consistency condition: \begin{itemize}% \item If $C$ carries the structure of a [[site]], one asks a generalized space to be a presheaf $X = PSh(C) = [C^{op},Set]$ that respects the way objects in $C$ are [[covering|covered]] by other objects. These are the \emph{[[sheaves]]}. The [[category of sheaves]] $Sh(C) \hookrightarrow PSh(C)$ is the [[topos]] of spaces modeled on objects in $C$. More details on how to think of sheaves as generalized spaces is at [[motivation for sheaves, cohomology and higher stacks]]. \item Given any generalized spaces, functions out of it are expected to respect [[product]]s of coefficient objects, in that a function with values in $U \times V$ is the same as a pair of functions, one with values in $U$, one with values in $V$. Hence one is typically interested in copresheaves that preserve at least [[product]] $CoSh(C) \hookrightarrow CoPSh(C)$. \end{itemize} \hypertarget{details}{}\subsubsection*{{Details}}\label{details} As indicated in \hyperlink{Lawvere86}{Lawvere 86, from p. 17 on} \begin{itemize}% \item (generalized) spaces; \item (generalized) quantities (e.g. [[algebras of functions]]); \item the [[duality]] between the two; \end{itemize} which underlies much of mathematics is at its heart controlled by the following elementary [[category theory|category theoretic]] reasoning: Let $S$ be some category whose objects we want to think of as certain simple spaces on which we want to model more general kinds of spaces. For instance $S = \Delta$, the simplicial category, or $S =$ [[CartSp]]. An ordinary [[manifold]], for instance, is a space required to be \emph{locally isomorphic} to an object in $S = CartSp$. But more generally, a space $X$ modeled on $S$ need only be \emph{probeable} by objects of $S$, giving a rule which to each test object $U \in S$ assigns the collection of admissible maps from $U$ to $X$, such that this assignment is well-behaved with respect to morphisms in $S$. Such an assignment is nothing but a [[presheaf]] on $S$, i.e. a contravariant functor \begin{displaymath} X : S^{op} \to Set \,. \end{displaymath} Therefore general spaces modeled on $S$ are nothing but presheaves on $S$: \begin{displaymath} Spaces_S := PSh(S) \,. \end{displaymath} Of course this is an extremely general notion of spaces modeled on $S$. We have the [[Yoneda lemma|Yoneda embedding]] $S \hookrightarrow Spaces_S$ and using this we can say that the collection of \emph{functions} on a generalized space $X$ with values in $U \in S$ is \begin{displaymath} C(X,U) := Hom_{Spaces_S}(X,U) \,. \end{displaymath} This assignment is manifestly covariant in $U$, and hence more generally we can consider the functions on $X$, $C(X)$ to be a copresheaf on $S$, namely a covariant functor \begin{displaymath} C(X) := Hom(X,-) : S \to Sets \,. \end{displaymath} One can think of $C(X)$ as being a generalized quantity which may be \emph{co-probed} by objects of $S$. In this vein, one can say, generally, that co-presheaves on $S$ are generalized quantities modeled on $S$, and we write \begin{displaymath} Quantities_S := CoPSh(S) \,. \end{displaymath} Given any such generalized quantity $A \in Quantities_S$, we can ask which generalized space it behaves like the algebra of functions on. This generalized space should be called $Spec(A)$ and can be defined as a presheaf by the assignment \begin{displaymath} Spec(A) : U \mapsto Hom_{Quantities_S}(A, C(U)) \,. \end{displaymath} In total this yields an adjoint pair of functors between generalized spaces and generalized quantities: \begin{displaymath} Spaces_S \stackrel{\stackrel{C(-)}{\to}}{\stackrel{Spec(-)}{\leftarrow}} Quantities_S \,. \end{displaymath} (That this is an adjunction can be understood as a special case of [[abstract Stone duality]] induced by a [[dualizing object]].) Lawvere refers to this [[adjoint pair]] as \textbf{[[Isbell conjugation]]}. In conclusion, the grand [[duality]] between spaces and quantities is a consequence of the [[formal duality]] which reverses the arrows in the category $S$ of test spaces. This story generalizes straightforwardly from [[presheaf|presheaves]] with values in [[Set]] to presheaves with values in other categories. Of relevance are in particular presheaves with values in the category [[Top]] of [[topological space]]s and presheaves with values in the category of [[spectrum|spectra]]. See the examples below. \hypertarget{Isbell}{}\subsection*{{Isbell duality: global functions and spectrum}}\label{Isbell} we describe the [[duality]] between space and quantity induced by forming \begin{itemize}% \item functions on spaces; \item spectra of function algebras. \end{itemize} Let $V$ be a [[symmetric monoidal category]] and $C$ a $V$-[[enriched category]]. Write $[C^{op},V]$ for the [[enriched functor category]] and $j : C \to [C^{op},V]$ for the [[Yoneda embedding]]. There is canonically a $V$-[[adjunction]] \begin{displaymath} (\mathcal{O} \dashv Spec) \;\;: \;\; [C, V]^{op} \stackrel{\overset{\mathcal{O}}{\leftarrow}}{\underset{Spec}{\to}} [C^{op},V] \end{displaymath} the \textbf{[[Isbell adjunction]]}. Here \begin{itemize}% \item $\mathcal{O} := [C^{op},V](j(-), -)$ sends a presheaf $X$ to the copresheaf $U \mapsto [C^{op},V](X,j(U))$; \item $Spec := [C,V]^{op}(j(-),-)$ sends a copresheaf $A$ to the presheaf $U \mapsto [C,V](A, j^{op}(U))$. \end{itemize} If we assume that $C$ is [[copower|tensored]] over $V$, then that this is an adjunction may be seen in [[end]]/[[coend]]-calculus to express the [[hom-object]]s in the [[enriched functor category]] as follows. We compute \begin{displaymath} \begin{aligned} [C,V]^{op}(\mathcal{O}(X),A) & = \int_{u \in C} V(A(u), [C^{op},V](X,j(u))) \\ & \simeq \int_{u \in C} V(A(u), [C^{op},V](\int^{v \in C} j(v) \cdot X(v),j(u))) \\ & \simeq \int_{u, v \in C} V(A(u) \cdot X(v), [C^{op},V](j(v),j(u))) \\ & \simeq \int_{u, v \in C} V(A(u) \cdot X(v), V(v,u)) \end{aligned} \,, \end{displaymath} where we used the [[Yoneda lemma]] $[C^{op},V](j(v),j(u)) \simeq V(v,u)$ and the [[co-Yoneda lemma]] $X \simeq \int^{v \in V} j(v) \cdot X(v)$ and the fact that the $V$-enriched hom sends colimits and coends in the first argument to limits and ends. Analogously we find \begin{displaymath} \begin{aligned} [C^{op},V](X,Spec A) & = \int_{v \in C} V(X(v),[C,V](A, j^{op}(v))) \\ & \simeq \int_{v \in C} V(X(v), [C,V](\int^{u \in C} j^{op}(u) \cdot X(v),j^{op}(u))) \\ & \simeq \int_{u, v \in C} V(A(u) \cdot X(v), [C,V](j^{op}(v),j^{op}(u))) \\ & \simeq \int_{u, v \in C} V(A(u) \cdot X(v), V(v,u)) \end{aligned} \,, \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{cartesian_test_spaces_diffeological_spaces_and_smooth_algebras}{}\subsubsection*{{Cartesian test spaces: diffeological spaces and smooth algebras}}\label{cartesian_test_spaces_diffeological_spaces_and_smooth_algebras} Consider the category of test spaces $C =$ [[CartSp]]. Then \begin{itemize}% \item spaces modeled on $C$ are [[generalized smooth space]]s such as [[diffeological space]]s; \item quantities modeled on $C$ are [[smooth algebra]]s ($C^\infty$-rings). \end{itemize} The adjunction $(\mathcal{O} \dashv Spec)$ sends a smooth space to its smooth algebra of functions and a smooth algebra of functions to its ``spectrum''. \hypertarget{higher_space_and_higher_quantity}{}\subsection*{{Higher space and higher quantity}}\label{higher_space_and_higher_quantity} There are various specializations of interest on this \begin{itemize}% \item [[higher category theory|higher categorical]] version \begin{itemize}% \item [[∞-space]] modeled on $C$ is a [[simplicial presheaf]] on $C$, i.e. a functor $X : C^{op} \to$ [[SSet]]. \item [[∞-quantity]] modeled on $C$ is a cosimplicial copresheaf on $C$, i.e. a functor $X : C \to CoSSet$ . \end{itemize} \end{itemize} With the advent of [[Higher Topos Theory]] abstract concepts of \emph{space and quantity} have been realized fully in the context of [[(∞,1)-topos]]es in terms of [[structured (∞,1)-topos]]es and [[generalized scheme]]s. For a summary see the tables at \href{http://ncatlab.org/nlab/show/A+Survey+of+Elliptic+Cohomology+-+the+derived+moduli+stack+of+derived+elliptic+curves#NotionsOfSpace}{notions of space}. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[space]] \item [[generalized smooth space]] \item [[geometry of physics -- categories and toposes]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The general perspective is due to \begin{itemize}% \item [[William Lawvere]], \emph{Taking categories seriously}, Revista Colombiana de Matematicas, XX (1986) 147-178, reprinted in: Reprints in Theory and Applications of Categories, No. 8 (2005) pp. 1-24 (\href{http://www.tac.mta.ca/tac/reprints/articles/8/tr8abs.html}{TAC}) \item [[William Lawvere]], \emph{Categories of space and quantity}, in: J. Echeverria et al (eds.), \emph{The Space of mathematics}, de Gruyter, Berlin, New York (1992) (\href{https://github.com/mattearnshaw/lawvere/blob/master/pdfs/1992-categories-of-space-and-quantity.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[William Lawvere]], \emph{John Isbell's Adequate Subcategories}, TopCom \textbf{11} no.1 2006. (\href{http://at.yorku.ca/t/o/p/d/65.htm}{link}) \end{itemize} [[!redirects quantity]] [[!redirects quantities]] [[!redirects space and quantity]] [[!redirects duality between space and quantity]] [[!redirects generalized space]] [[!redirects generalized spaces]] \end{document}