\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{span rewriting} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{span_rewriting}{}\section*{{Span rewriting}}\label{span_rewriting} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{double_pushout_rewriting}{Double pushout rewriting}\dotfill \pageref*{double_pushout_rewriting} \linebreak \noindent\hyperlink{sesquipushout_rewriting}{Sesqui-pushout rewriting}\dotfill \pageref*{sesquipushout_rewriting} \linebreak \noindent\hyperlink{single_pushout_rewriting}{Single pushout rewriting}\dotfill \pageref*{single_pushout_rewriting} \linebreak \noindent\hyperlink{general_gluing_constructions}{General gluing constructions}\dotfill \pageref*{general_gluing_constructions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Span rewriting is a collection of abstract [[category theory|category-theoretic]] methods of using [[spans]] to ``rewrite'' [[objects]] in a [[category]] by ``deleting'' part of them and replacing it with a substitute part that retains some of the same ``connections'' between the deleted part and the rest of the object. The most common application is to the category of [[quivers]] (called [[directed graphs|(directed) graphs]] in the relevant literature) or related categories; thus span rewriting is often called ``graph rewriting''. There is probably not much connection to algebraic [[rewriting]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} All the definitions below have the following context in common. A \textbf{production} or \textbf{rule} in a category (often the category [[Quiv]] of [[quivers]]) is a [[span]] \begin{displaymath} L \xleftarrow{l} K \xrightarrow{r} R. \end{displaymath} A \textbf{match} for this production is a morphism $f:L\to C$ for some object $C$. A \textbf{derivation} of a match along a production is supposed to be a new object obtained by ``deleting the image of $L$ and replacing it with $R$''. A production is \textbf{left-linear} if $l$ is a [[monomorphism]], and \textbf{linear} if in addition $r$ is a monomorphism. \hypertarget{double_pushout_rewriting}{}\subsubsection*{{Double pushout rewriting}}\label{double_pushout_rewriting} For this definition, we work in an [[adhesive category]] (which includes all [[toposes]], hence in particular $Quiv$). Given a left-linear production $L \xleftarrow{l} K \xrightarrow{r} R$, a match $f:L\to C$ satisfies the \textbf{gluing condition} if the pair $(l,f)$ has a [[pushout complement]] consisting of $g:K\to E$ and $v:E\to C$. In this case the \textbf{(double-pushout) derivation} associated to the match is the pushout of $g$ along $r$, yielding a pair of pushout squares \begin{displaymath} \itexarray{ L & \xleftarrow{l} & K & \xrightarrow{r} & R \\ ^f\downarrow && \downarrow^{\mathrlap{g}} && \downarrow \\ C & \xleftarrow{v} & E & \to & D.} \end{displaymath} The restriction of $l$ to be monic is necessary to ensure that pushout complements are essentially unique when they exist. Often we further restrict $r$ to be monic to ensure overall good behavior, obtaining the notion of \textbf{linear production}. \hyperlink{LS}{Lack and Sobocinski} describe the intuition in this way: \begin{quote}% in order to perform the rewrite, we need to match $L$ as a substructure of a redex $C$. The structure $K$, thought of as a substructure of $L$, is exactly the part of $L$ which is to remain invariant as we apply the rule to $C$. Finally, parts of $R$ which are not in $K$ should be added to produce the final result of the rewrite. Thus, an application of a rewrite rule consists of three steps. First we must match $L$ as a substructure of the redex C; secondly, we delete all of parts of the redex matched by $L$ which are not included in $K$. Thirdly, we add all of $R$ which is not contained in $K$, thereby producing a new structure $D$. The deletion and addition of structure is handled, respectively, by finding a pushout complement and constructing a pushout. \end{quote} \hypertarget{sesquipushout_rewriting}{}\subsubsection*{{Sesqui-pushout rewriting}}\label{sesquipushout_rewriting} In an adhesive category, the pushout of a monomorphism is also a pullback. Thus, the pushout complements involved in double-pushout rewriting are also ``pullback complements''. Pullback complements are not in general unique, even in an adhesive category, but those arising as pushout complements do satisfy a [[universal property]]: they are [[final pullback complements]]. This suggests the following generalization. In an arbitrary category, given an arbitrary production $L \xleftarrow{l} K \xrightarrow{r} R$, the \textbf{(sesqui-pushout) derivation} associated to a match $f:L\to C$ is a diagram \begin{displaymath} \itexarray{ L & \xleftarrow{l} & K & \xrightarrow{r} & R \\ ^f\downarrow && \downarrow^{\mathrlap{g}} && \downarrow \\ C & \xleftarrow{v} & E & \to & D.} \end{displaymath} in which the left square is a final pullback complement and the right square is a pushout. Such a derivation may or may not exist, but if it does then it is essentially unique. Moreover, if we are in an adhesive category and $l$ is monic, then any double-pushout derivation is also a sesqui-pushout derivation. More generally, given the construction of final pullback complements using [[exponential objects]], if the exponential $\Pi_f l$ exists and the [[counit]] $f^* \Pi_f l \to l$ is an isomorphism, then such a derivation exists with $E = \Pi_f l$. In particular, this happens in any [[locally cartesian closed category]] if $f$ and $l$ are both monomorphisms. \hypertarget{single_pushout_rewriting}{}\subsubsection*{{Single pushout rewriting}}\label{single_pushout_rewriting} We can also regard a left-linear production as a [[partial morphism]], in which case the universal property of a final pullback complement suggests the following different viewpoint. Given a left-linear production $L \xleftarrow{l} K \xrightarrow{r} R$, the \textbf{(single-pushout) derivation} associated to a match $f:L\to C$ is the [[pushout]] of $(l,r)$ and $f$ in the category of partial morphisms (if it exists). It can be shown (see \hyperlink{CHHK}{CHHK}) that in a certain abstract context, any sesqui-pushout derivation of a left-linear production is also a single-pushout derivation; and that the converse holds if and only if the match is ``conflict-free'', and if and only if the induced partial morphism from $R$ to the target object $D$ is total. \hypertarget{general_gluing_constructions}{}\subsubsection*{{General gluing constructions}}\label{general_gluing_constructions} In \hyperlink{Lowe10}{Lowe10} and \hyperlink{Lowe12}{Lowe12} a yet more general construction is considered for span rewriting, involving $3\times 3$ diagrams consisting of a pullback, two final pullback complements, and a pushout. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item H. Ehrig, M. Pfender, and H.J. Schneider, \emph{Graph-grammars: an algebraic approach}, In IEEE Conf. on Automata and Switching Theory, pages 167--180, 1973. \item [[Steve Lack]] and [[Pawel Sobocinski]], \emph{Adhesive categories}, \href{http://users.ecs.soton.ac.uk/ps/papers/adhesive.pdf}{PDF} \end{itemize} \begin{itemize}% \item Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara K\"o{}nig, \emph{Sesqui-pushout rewriting}, 2006, \href{https://link.springer.com/chapter/10.1007/11841883_4}{springerlink}, \href{http://www.ti.inf.uni-due.de/publications/koenig/icgt06b.pdf}{pdf}. \end{itemize} \begin{itemize}% \item Michael L\"o{}we, \emph{Graph rewriting in Span-categories}, 2010, \href{https://link.springer.com/chapter/10.1007/978-3-642-15928-2_15}{springerlink} \end{itemize} \begin{itemize}% \item Michael L\"o{}we, \emph{Refined graph rewriting in Span-categories}, 2012, \href{https://link.springer.com/chapter/10.1007/978-3-642-33654-6_8}{springerlink} \end{itemize} \begin{itemize}% \item Nicolas Behr, Pawel Sobocinski, \emph{Rule Algebras for Adhesive Categories}, \href{https://arxiv.org/abs/1807.00785}{arXiv:1807.00785} \end{itemize} [[!redirects graph rewriting]] [[!redirects double pushout graph rewriting]] [[!redirects double pushout rewriting]] [[!redirects single pushout graph rewriting]] [[!redirects single pushout rewriting]] [[!redirects sesqui-pushout graph rewriting]] [[!redirects sesqui-pushout rewriting]] \end{document}