\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{span trace} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_spans}{For Spans}\dotfill \pageref*{for_spans} \linebreak \noindent\hyperlink{for_multispans}{For multispans}\dotfill \pageref*{for_multispans} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{trace_of_setvalued_matrices}{Trace of Set-valued matrices}\dotfill \pageref*{trace_of_setvalued_matrices} \linebreak \noindent\hyperlink{loop_objects_from_homotopy_span_traces}{Loop objects from homotopy span traces}\dotfill \pageref*{loop_objects_from_homotopy_span_traces} \linebreak \noindent\hyperlink{categorical_trace_from_homotopical_span_trace}{Categorical trace from homotopical span trace}\dotfill \pageref*{categorical_trace_from_homotopical_span_trace} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[integral transforms on sheaves]] one thinks of a [[span]] as a generalized linear map. The \emph{span trace} is the corresponding generalization of the notion of a trace of a linear map. This is just the general [[trace]] of an [[endomorphism]] which is definable in any [[compact closed category|compact/autonomous]] [[symmetric monoidal category|symmetric monoidal (2-)category]], of which $Span$ is an example (as described below). In the context of [[FQFT]] a useful aspect of the span trace is that it is manifestly dual to the [[co-span co-trace]], which, as described there, corresponds under the interpretation of spans as [[cobordism]]s to gluing of the two ends of a cobordism. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_spans}{}\subsubsection*{{For Spans}}\label{for_spans} For \begin{displaymath} \itexarray{ && R \\ & {}^x\swarrow && \searrow^{y} \\ X &&&& X } \end{displaymath} a [[span]] with identical left and right index object $X$, the simplest way to define its \textbf{span trace} $tr(R)$ is as by regarding it as a map $R\to X\times X$, then pulling back along the [[diagonal morphism]] $X\to X\times X$. This can be expressed in terms of the [[bicategory]] [[Span]] in several ways. For instance, we can regard it as the composite of the result \begin{displaymath} \itexarray{ && R \\ & {}^{x \times y}\swarrow && \searrow \\ X \times X &&&& pt } \end{displaymath} of dualizing one leg of the span with the span \begin{displaymath} \itexarray{ && X \\ & {}^{}\swarrow && \searrow^{Id \times Id} \\ pt &&&& X \times X } \end{displaymath} i.e. the [[pullback]] \begin{displaymath} \itexarray{ &&&& \mathrm{tr}R \\ &&& \swarrow && \searrow \\ && X &&&& R \\ & {}^{}\swarrow && \searrow^{Id \times Id} && {}^{x \times y}\swarrow && \searrow \\ pt &&&& X \times X &&&& pt } \end{displaymath} regarded as a span from the point to the point \begin{displaymath} \itexarray{ && tr(R) \\ & {}^{}\swarrow && \searrow \\ pt &&&& pt } \,. \end{displaymath} \hypertarget{for_multispans}{}\subsubsection*{{For multispans}}\label{for_multispans} More generally, the trace of a [[multispan]] over $n$ identical of its index objects $X$ is the composite with the multispan \begin{displaymath} \itexarray{ & X \\ & {}^{Id}\swarrow \downarrow^{Id} & \cdots \\ X & X & \cdots & X & \cdots } \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{trace_of_setvalued_matrices}{}\subsubsection*{{Trace of Set-valued matrices}}\label{trace_of_setvalued_matrices} Let the ambient category be [[Set]], let $X$ be a finite set and $R \to X \times X$ an $|X| \times |X|$-matrix of finite sets, regarded under [[groupoid cardinality]] as a [[groupoidification|groupoidified]] $|X| \times |X|$-matrix with entries in $\mathbb{N}$. The trace of the span \begin{displaymath} \itexarray{ && R \\ & {}^x\swarrow && \searrow^{y} \\ X &&&& X } \end{displaymath} is the pullback \begin{displaymath} \itexarray{ tr(R) &\to& R \\ \downarrow && \downarrow^{x,y} \\ X &\stackrel{Id \times Id}{\to}& X \times X } \end{displaymath} which is the [[coproduct]] set $tr(R) = \sqcup_{x \in X} R_{x,x}$. Under [[groupoid cardinality]] this is indeed the trace $|tr(R)| = \sum_{x} |R_{x,x}|$ of the matrix $|R|$ represented by $R$. \hypertarget{loop_objects_from_homotopy_span_traces}{}\subsubsection*{{Loop objects from homotopy span traces}}\label{loop_objects_from_homotopy_span_traces} Let $C$ be a [[category of fibrant objects]] with [[interval object]] $I$. Recall that for every object $B$ of $C$ its free [[loop space object]] is the part of the [[path object]] $B^I = [I,B]$ which consists of closed paths, i.e. the pullback. \begin{displaymath} \itexarray{ \Omega B &\to& [I,B] \\ \downarrow && \downarrow^{d_0 \times d_1} \\ B &\stackrel{Id \times Id}{\to}& B \times B } \,. \end{displaymath} This can be understood as the \emph{homotopy span trace} of the identity span on $B$ \begin{displaymath} \Omega B = hotr(Id_B) = hotr\left( \itexarray{ && B \\ & {}^{Id}\swarrow && \searrow^{Id} B &&&& B } \right) \,, \end{displaymath} where the homotopy span trace is computed like the span trace but with the pullback replaced by a [[homotopy limit|homotopy pullback]]: \begin{displaymath} hotr(Id_B) = holim \left( \itexarray{ B &&&& B \\ & {}_{Id \times Id}\searrow && \swarrow_{Id \times Id} \\ && B \times B } \right) \,. \end{displaymath} According to the example described at [[homotopy limit]] and using that we assume that we are in a [[category of fibrant objects]] we can compute this homotopy limit, up to weak equivalence, as the ordinary limit of the weakly equivalent pullback diagram \begin{displaymath} \itexarray{ F &&&& B &\stackrel{Id \times Id}{\to}& B \times B &\stackrel{Id \times Id}{\leftarrow}& B \\ \downarrow^{\simeq} &&&& \downarrow^{\simeq} && \downarrow^{Id} && \downarrow^{Id} \\ F' &&&& [I,B] &\stackrel{d_0 \times d_1}{\to}& B \times B &\stackrel{Id \times Id}{\leftarrow}& B } \end{displaymath} where we replace $B$ by its [[path object]] $B^I = [I,B]$ using the factorization of $B \stackrel{Id \times Id}{\to} B \times B$ as $B \stackrel{\simeq}{\to} [I,B] \stackrel{d_0 \times d_1}{\to} B \times B$ guaranteed to exist in a [[category of fibrant objects]], where $[I, B] \stackrel{d_0 \times d_1}{\to} B \times B$ is a \emph{fibration}: \begin{displaymath} holim_D F \stackrel{\simeq}{\to} lim_D F' \,. \end{displaymath} But by the above $lim_D F' = \Omega B$. \hypertarget{categorical_trace_from_homotopical_span_trace}{}\subsubsection*{{Categorical trace from homotopical span trace}}\label{categorical_trace_from_homotopical_span_trace} The [[categorical trace]] on a 1-[[endomorphism]] in a 2-category $C$ is the homotopy trace on the span given by that endomorphism. This should be true quite generally, but here are the details just for the special case that connects to the above example: Let $C =$ [[Grpd]] with the standard interval object $I = \{a \stackrel{\simeq}{\to} b\}$. This is a [[category of fibrant objects]] with respect to the [[folk model structure]]. Notice that [[natural transformation]]s $\eta : F \to G$ between two functors $F, G : C \to D$ are in bijection with commuting diagrams \begin{displaymath} \itexarray{ X &\stackrel{\eta}{\to}& [I,Y] \\ \downarrow^{Id} && \downarrow^{d_0 \times d_1} \\ X &\stackrel{F \times G}{\to}& Y \times Y } \,. \end{displaymath} Now, the homotopy trace on the span corresponding to an ednofunctor $F : B \to B$ is \begin{displaymath} hotr(F) = hotr\left( \itexarray{ && B \\ & {}^{Id}\swarrow && \searrow^{F} \\ B &&&& B } \right) = holim\left( \itexarray{ B &&&& B \\ & {}_{Id \times Id}\searrow && \swarrow{F \times Id} \\ && B \times B } \right) \,. \end{displaymath} Since we are in a category of fibrant objects the assumptions of the example discussed at [[homotopy limit]] apply and the above homotopy limit is again computed, up to weak equivalence, by the ordinary limit of \begin{displaymath} \cdots \stackrel{\simeq}{\to} lim \left( \itexarray{ [I,B] &&&& B \\ & {}_{d_0 \times d_1}\searrow && \swarrow{Id \times F} \\ && B \times B } \right) \,. \end{displaymath} By the above, every cone over the pullback diagram with a functor $h : Q \to B$, on the right defines a natural transformation $h^*(Id_B \Rightarrow F)$. By the universal property of the limit, it \emph{represents} the collection of these transformations. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The dual notion is that of [[co-span co-trace]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} That the canonical trace on $Span$ is compatible with the interpretation of spans as linear maps in the context of [[groupoidification]], and that it corresponds under duality (in terms of the [[co-span co-trace]]) to the gluing of ends of [[cobordism]]s was mentioned in \begin{itemize}% \item Urs Schreiber, \href{http://golem.ph.utexas.edu/category/2008/05/hopkinslurie_on_baezdolan.html#c021537}{(co)-traces} (2008) \end{itemize} More discussion is in \begin{itemize}% \item [[David Ben-Zvi]], [[David Nadler]], \emph{Nonlinear traces} (\href{http://arxiv.org/abs/1305.7175}{arXiv:1305.7175}) \end{itemize} [[!redirects span traces]] \end{document}