\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{specialization topology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{the_specialisation_topology}{}\section*{{The specialisation topology}}\label{the_specialisation_topology} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{alexandroff_topological_spaces}{Alexandroff topological spaces}\dotfill \pageref*{alexandroff_topological_spaces} \linebreak \noindent\hyperlink{AlexandrovLocales}{Alexandroff locales}\dotfill \pageref*{AlexandrovLocales} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{specialisation topology}, also called the \textbf{Alexandroff topology}, is a natural structure of a [[topological space]] induced on the underlying [[set]] of a [[preordered set]]. This is similar to the [[Scott topology]], which is however coarser. Spaces with this topology, called \emph{Alexandroff spaces} and named after [[Paul Alexandroff]] (Pavel Aleksandrov), should not be confused with \emph{[[Alexandrov spaces]]} (which arise in [[differential geometry]] and are named after [[Alexander Alexandrov]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $P$ be a [[preordered set]]. Declare a [[subset]] $A$ of $P$ to be an \emph{[[open subset]]} if it is upwards-closed. That is, if $x \leq y$ and $x \in A$, then $y \in A$. This defines a [[topology]] on $P$, called the \textbf{specialization topology} or \textbf{Alexandroff topology}. \end{defn} \begin{remark} \label{}\hypertarget{}{} One may also use the convention that the open sets are the downwards-closed subsets; this is the specialisation topology on the [[opposite category|opposite]] $P^\op$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Sierpinski space]] is the poset of [[truth values]] with the specialisation topology. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} Every [[finite topological space]] is an Alexandroff space. \end{prop} \begin{prop} \label{}\hypertarget{}{} A [[preorder]] $P$ is a [[partial order|poset]] if and only if its specialisation topology is $T_0$. \end{prop} \begin{prop} \label{}\hypertarget{}{} A [[function]] between preorders is order-preserving if and only if it is a [[continuous map]] with respect to the specialisation topology. \end{prop} \hypertarget{alexandroff_topological_spaces}{}\subsubsection*{{Alexandroff topological spaces}}\label{alexandroff_topological_spaces} \begin{defn} \label{}\hypertarget{}{} An \textbf{Alexandroff space} is a [[topological space]] for which arbitrary (as opposed to just finite) [[intersections]] of [[open subsets]] are still open. Write \begin{displaymath} AlexTop \hookrightarrow Top \end{displaymath} for the [[full subcategory]] of [[Top]] on the Alexandroff spaces. \end{defn} \begin{prop} \label{}\hypertarget{}{} Every Alexandroff space is obtained by equipping its [[specialization order]] with the Alexandroff topology. \end{prop} \begin{cor} \label{}\hypertarget{}{} The specialization topology embeds the category $\Pros$ of preordered sets [[full subcategory|fully-faithfully]] in the category [[Top]] of topological spaces. \begin{displaymath} Proset \hookrightarrow Top \,. \end{displaymath} If we restrict to a [[finite set|finite]] underlying set, then the categories $\Fin\Pros$ and $\Fin\Top$ of finite prosets and [[finite topological spaces]] are [[equivalence of categories|equivalent]] in this way. \end{cor} \hypertarget{AlexandrovLocales}{}\subsubsection*{{Alexandroff locales}}\label{AlexandrovLocales} \begin{defn} \label{}\hypertarget{}{} Write $AlexLocale$ for the non-[[full subcategory|full]] [[subcategory]] of [[Locale]] whose \begin{itemize}% \item [[object]]s are \textbf{Alexandroff locales}, that is locales of the form $Alex P$ for $P\in Poset$ with $Open(Alex(P)) = UpSets(P)$; \item [[morphisms]] are those morphisms of locales $f\colon Alex P \to Alex Q$, for which the dual [[inverse image]] morphism of [[frames]] $f^*\colon UpSet(Q) \to UpSet(P)$ has a [[left adjoint]] $f_!\colon UpSet(P) \to UpSet(Q)$. \end{itemize} \end{defn} This appears as (\hyperlink{Caramello}{Caramello, p. 55}). \begin{remark} \label{}\hypertarget{}{} By the definition of the [[2-category]] [[Locale]] (see there), this means that $AlexPoset$ consists of those morphisms which have \emph{right} adjoints in [[Locale]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} The functor $Alex\colon Poset \to Locale$ factors through $AlexLocale$ and exhibits an [[equivalence of categories]] \begin{displaymath} Alex\colon Poset \stackrel{\simeq}{\to} AlexLocale \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Caramello}{Caramello, theorem 4.2}). \begin{prop} \label{}\hypertarget{}{} The category of Alexandroff locales is equivalent to that of [[completely distributive lattice|completely distributive]] [[algebraic lattice]]s. \end{prop} This appears as (\hyperlink{Caramello}{Caramello, remark 4.3}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[order topology]] \item [[Scott topology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia (English), \href{http://en.wikipedia.org/wiki/Alexandrov_topology}{Alexandrov topology} \end{itemize} The original article is \begin{itemize}% \item [[Paul Alexandroff]], \emph{Diskrete R\"a{}ume} (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5579&option_lang=eng}{web}) (1973) \end{itemize} Details on Alexandroff spaces are in \begin{itemize}% \item F. Arenas, \emph{Alexandroff spaces}, Acta Math. Univ. Comenianae Vol. LXVIII, 1 (1999), pp. 17--25 (\href{http://www.emis.de/journals/AMUC/_vol-68/_no_1/_arenas/arenas.pdf}{pdf}) \item Timothy Speer, \emph{A Short Study of Alexandroff Spaces} (\href{http://arxiv.org/abs/0708.2136}{arXiv:0708.2136}) \end{itemize} A useful discussion of the abstract relation between posets and Alexandroff [[locales]] is in section 4.1 of \begin{itemize}% \item [[Olivia Caramello]], \emph{A topos-theoretic approach to Stone-type dualities} (\href{http://arxiv.org/abs/1103.3493}{arXiv:1103.3493}) \end{itemize} See also around page 45 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Stone Spaces]]} \end{itemize} A discussion of [[abelian sheaf cohomology]] on Alexandroff spaces is in \begin{itemize}% \item Morten Brun, Winfried Bruns, Tim R\"o{}mer, \emph{Cohomology of partially ordered sets and local cohomology of section rings} Advances in Mathematics 208 (2007) 210--235 (\href{http://www.home.uni-osnabrueck.de/wbruns/brunsw/pdf-article/BrunBrunsRoemer.published.pdf}{pdf}) \end{itemize} [[!redirects specialization topology]] [[!redirects specialization topologies]] [[!redirects specialisation topology]] [[!redirects specialisation topologies]] [[!redirects Alexandroff topology]] [[!redirects Alexandroff topologies]] [[!redirects Alexandrov topology]] [[!redirects Alexandrov topologies]] [[!redirects Alexandroff space]] [[!redirects Alexandroff spaces]] [[!redirects Alexandroff locale]] [[!redirects Alexandroff locales]] [[!redirects Alexandrov locale]] [[!redirects Alexandrov locales]] [[!redirects completely distributive algebraic lattice]] [[!redirects completely distributive algebraic lattices]] \end{document}