\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{species} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{combinatorics}{}\paragraph*{{Combinatorics}}\label{combinatorics} [[!include combinatorics - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{1categorical}{1-categorical}\dotfill \pageref*{1categorical} \linebreak \noindent\hyperlink{2categorical}{2-categorical}\dotfill \pageref*{2categorical} \linebreak \noindent\hyperlink{categorical}{$(\infty,1)$-categorical}\dotfill \pageref*{categorical} \linebreak \noindent\hyperlink{operations_on_species}{Operations on species}\dotfill \pageref*{operations_on_species} \linebreak \noindent\hyperlink{sum}{Sum}\dotfill \pageref*{sum} \linebreak \noindent\hyperlink{cauchy_product}{Cauchy product}\dotfill \pageref*{cauchy_product} \linebreak \noindent\hyperlink{hadamard_product}{Hadamard product}\dotfill \pageref*{hadamard_product} \linebreak \noindent\hyperlink{dirichlet_product}{Dirichlet product}\dotfill \pageref*{dirichlet_product} \linebreak \noindent\hyperlink{composition_product}{Composition product}\dotfill \pageref*{composition_product} \linebreak \noindent\hyperlink{InHomotopyTypeTheory}{In Homotopy Type Theory}\dotfill \pageref*{InHomotopyTypeTheory} \linebreak \noindent\hyperlink{operations_on_species_2}{Operations on species}\dotfill \pageref*{operations_on_species_2} \linebreak \noindent\hyperlink{coproduct}{Coproduct}\dotfill \pageref*{coproduct} \linebreak \noindent\hyperlink{hadamard_product_2}{Hadamard product}\dotfill \pageref*{hadamard_product_2} \linebreak \noindent\hyperlink{HoTTCauchyProduct}{Cauchy product}\dotfill \pageref*{HoTTCauchyProduct} \linebreak \noindent\hyperlink{composition}{Composition}\dotfill \pageref*{composition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cardinality}{Cardinality}\dotfill \pageref*{cardinality} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{(combinatorial) species} is a [[presheaf]] or [[higher category theory|higher categorical]] presheaf on the [[groupoid]] [[core]]([[FinSet]]), the [[permutation groupoid]]. A species is a \emph{[[symmetric sequence]]} by another name. Meaning: they are categorically equivalent notions. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{1categorical}{}\subsubsection*{{1-categorical}}\label{1categorical} The [[category]] of \textbf{species}, $Species := PSh(core(FinSet))$, is the [[category of presheaves]] on the [[groupoid]] $\mathbb{P} := core(FinSet)$ of [[finite sets]] and [[bijections]], the [[core]] of [[FinSet]]: \begin{displaymath} \hat \mathbb{P} := PSh(core(FinSet)) \,. \end{displaymath} For more, see [[structure type]]. \hypertarget{2categorical}{}\subsubsection*{{2-categorical}}\label{2categorical} A \textbf{2-species} (usually called a [[stuff type]]) is a [[2-presheaf]] on [[core]]([[FinSet]]), i.e. a [[pseudofunctor]] \begin{displaymath} core(FinSet) \to Grpd \end{displaymath} to the [[2-category]] [[Grpd]]. \hypertarget{categorical}{}\subsubsection*{{$(\infty,1)$-categorical}}\label{categorical} Generally, an \textbf{$\infty$-species} or \textbf{homotopical species} is an [[(∞,1)-presheaf]] on $core(FinSet)$, i.e. an [[(∞,1)-functor]] \begin{displaymath} core(FinSet)^{op} \to \infty Grpd \end{displaymath} to the [[(∞,1)-category]] [[∞Grpd]]. The [[(∞,1)-category]] of $\infty$-species is the [[(∞,1)-category of (∞,1)-presheaves]] \begin{displaymath} \infty Species := PSh_{(\infty,1)}(core(FinSet)) \,, \end{displaymath} For more on this see also below the discussion \emph{\hyperlink{InHomotopyTypeTheory}{In homotopy type theory}}. \hypertarget{operations_on_species}{}\subsubsection*{{Operations on species}}\label{operations_on_species} There are in fact 5 important monoidal structures on the category of species. \hypertarget{sum}{}\paragraph*{{Sum}}\label{sum} The \textbf{sum} $A + B$ of two species $A$, $B$ is their [[coproduct]] $A \coprod B$. Since [[colimit]]s of [[presheaves]] are computed objectwise, we have \begin{displaymath} (A + B)_n \simeq A_n \coprod B_n \,. \end{displaymath} The generating function of the sum of species is the sum of their generating functions. \hypertarget{cauchy_product}{}\paragraph*{{Cauchy product}}\label{cauchy_product} The category $core(FinSet)$ becomes a [[monoidal category]] under disjoint union of finite sets. This monoidal structure $(core(FinSet), \coprod)$ induces canonically the [[Day convolution]] monoidal structure on $Species := PSh(core(FinSet))$. This is often called the \textbf{Cauchy product} of species, or sometimes (confusingly) just the ``product'', since the generating function of the Cauchy product of species is the product of their generating functions. Explicitly, the Cauchy product of species $A$ and $B$ is given by the [[coend]] \begin{displaymath} (A \otimes B)_n \simeq \int^{n \in FinSet} A_k \times B_l \times Hom_{core(FinSet)}(n,k+l) \simeq \coprod_{k+l = n} \prod_{\frac{(k+l)!}{k! + l!}} (A_k \times B_l) \,. \end{displaymath} \hypertarget{hadamard_product}{}\paragraph*{{Hadamard product}}\label{hadamard_product} The category of species also has cartesian [[product]]s. Since products of [[presheaves]] are computed objectwise, we have \begin{displaymath} (A \times B)_n \simeq A_n \times B_n \,. \end{displaymath} This operation is often called the \textbf{Hadamard product} of species. \hypertarget{dirichlet_product}{}\paragraph*{{Dirichlet product}}\label{dirichlet_product} The category $core(FinSet)$ also becomes a [[monoidal category]] under cartesian product of finite sets. This monoidal structure induces another [[Day convolution]] monoidal structure on $Species := PSh(core(FinSet))$. This could be called the \textbf{Dirichlet product} of species, or sometimes simply the product, since the Dirichlet series of this product of species is the product of their Dirichlet series. (See \href{https://ncatlab.org/johnbaez/show/Dirichlet+species+and+the+Hasse-Weil+zeta+function}{Dirichlet series and the Hasse--Weil zeta function}.) \hypertarget{composition_product}{}\paragraph*{{Composition product}}\label{composition_product} Finally, there is a monoidal structure on the category of species known as \textbf{plethysm} or \textbf{composition}. The generating function of a composite of two species is the composite of their generating functions (in the sense of formal power series). A monoid with respect to the plethysm tensor product is called an [[operad]]. \hypertarget{InHomotopyTypeTheory}{}\subsection*{{In Homotopy Type Theory}}\label{InHomotopyTypeTheory} The following discusses formalization of the concept of species in [[homotopy type theory]]. Let [[FinSet]] be the [[type]] of [[finite sets]] (see at \emph{[[hSet]]}). Notice that in [[homotopy type theory]] this automatically comes out as the [[groupoid]] of finite sets (see also at \emph{[[universe in type theory]]}), so we may (and do) suppress writing ``[[core]]'' here. \begin{defn} \label{HoTTSpecies}\hypertarget{HoTTSpecies}{} A \emph{species} is a type $X \colon Type$ equipped with a [[function]] into $FinSet$. Hence the type of all species is the [[dependent sum]] \begin{displaymath} Species \coloneqq \sum_{X : Type} (X \to FinSet) \end{displaymath} of all [[function types]] $X \to FinSet$ as $X$ ranges over the [[type of types]]. \end{defn} Write \begin{displaymath} FinSet \longrightarrow {\|FinSet\|_{0}} \simeq \mathbb{N} \end{displaymath} for the [[unit of a monad|unit]] of the [[n-truncation modality|0-truncation modality]] on [[FinSet]], going into the [[type of natural numbers]]. Given a species $f \colon X \to FinSet$ as in def. \ref{HoTTSpecies}, its ``[[decategorification]]'' is the composite \begin{displaymath} f \circ card \colon X \stackrel{f}{\longrightarrow} FinSet \to {\|FinSet\|_{0}} \simeq \mathbb{N} \end{displaymath} \begin{defn} \label{HoTTGeneratinFunction}\hypertarget{HoTTGeneratinFunction}{} The \emph{[[generating function]]} of a species $f \colon X \to FinSet$, def. \ref{HoTTSpecies}, is \begin{displaymath} {|X|}(z) \coloneqq \sum_{n=0}^{\infty} {\big| fib_{f \circ card}(n) \big|}\, z^{n} = \sum_{n=0}^{\infty} {\big| fib_{f}(Fin(n)) \big|}\, \frac{z^{n}}{n!} \,, \end{displaymath} where $fib(-)$ denotes the [[homotopy fiber]] and $Fin(n)$ denotes a [[0-type]] with exactly $n$ elements. \end{defn} \begin{defn} \label{}\hypertarget{}{} If $\Phi : FinSet \to Type$ is a family of types, then we obtain the species \begin{displaymath} pr_{1} : \bigg(\sum_{A : FinSet} \Phi(A)\bigg) \to FinSet \end{displaymath} with generating function \begin{displaymath} {|\Phi|}(z) = \sum_{n=0}^{\infty} {|\Phi(Fin(n))|} \frac{z^{n}}{n!} \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} If $\Phi$ is a [[stuff, structure, property|stuff, structure, or property]] on finite sets, then we immediately know something about its generating function, considered as an exponential generating function: \begin{itemize}% \item If $\Phi(A)$ is [[contractible type|contractible]] for all $A$, then $\Phi(Fin(n)) = 1$, so its generating function is the [[exponential function]] $e^{z}$. \item If $\Phi(A)$ is a family of [[mere propositions]], then every coefficient is either $0$ or $1$, according to whether $A$ can be equipped with a $\Phi$-structure or not. \item If $\Phi(A)$ is a family of sets (i.e., a [[structure type]]), then every coefficient is an element of the [[type of natural numbers]] $\mathbb{N}$. \item If $\Phi(A)$ has a higher homotopy level (i.e., is a [[stuff type]]), then the coefficients are in $[0, \infty)$. \end{itemize} \end{example} \begin{remark} \label{}\hypertarget{}{} Since any species $f : X \to Type$ is equal to \begin{displaymath} pr_{1} : \bigg(\sum_{x:X}fib_{f}(x)\bigg) \to Type \end{displaymath} every species is equal to one obtained from a [[stuff type]]. \end{remark} \hypertarget{operations_on_species_2}{}\subsubsection*{{Operations on species}}\label{operations_on_species_2} The five monoidal structures mentioned above under \hyperlink{operations_on_species}{Operations on species} can be represented in HoTT, along with a couple other useful operations. We give four of the five monoidal structures here. For more operations, see (\hyperlink{Dougherty15}{Dougherty15}). We assume throughout this subsection that $f : X \to \Finset$ and $g : Y \to Finset$ are two species, and $\Phi, \Psi : FinSet \to Type$ are two stuff types. \hypertarget{coproduct}{}\paragraph*{{Coproduct}}\label{coproduct} The recursion principle for the coproduct gives the species \begin{displaymath} \itexarray{ (f + g) &:& X + Y \to Finset \\ (f + g) &:& rec_{X + Y}(FinSet, f, g) = z \mapsto \left\{\itexarray{ f(x) & \text{if}\; z \equiv inl x \\ g(y) & \text {if}\; z \equiv inr y .}\right. } \end{displaymath} If $X$ and $Y$ are obtained from $\Phi$ and $\Psi$, respectively, then the coproduct is equal to \begin{displaymath} \sum_{A : FinSet} (\Phi(A) + \Psi(A)) \end{displaymath} The generating function for the coproduct is \begin{displaymath} {|X + Y|}(z) = {|X|}(z) + {|Y|}(z) \end{displaymath} \hypertarget{hadamard_product_2}{}\paragraph*{{Hadamard product}}\label{hadamard_product_2} The Hadamard product of species is \begin{displaymath} \itexarray{ \langle X, Y \rangle &:& X \times_{FinSet} Y \to FinSet \\ \langle X, Y \rangle &:& (x, y, p) \mapsto f(x) } \end{displaymath} which for stuff types is equal to \begin{displaymath} \itexarray{ \sum_{A : FinSet} (\Phi(A) \times \Psi(A)) } \end{displaymath} The generating functions are related by \begin{displaymath} {|\langle X, Y \rangle|}(z) = \sum_{n=0}^{\infty} n! X_{n} Y_{n} z^{n} \end{displaymath} where $X_{n}$ and $Y_{n}$ are the $n$th coefficients of the functions ${|X|}(z)$ and ${|Y|}(z)$, respectively. The name ``Hadamard product'' is used in (\hyperlink{AguiarMahajan10}{Aguiar-Mahajan10}) and (\hyperlink{Bergeron08}{Bergeron-Labelle-Leroux08}). In (\hyperlink{Baez01}{Baez-Dolan01}) ${|\langle X, Y \rangle|}(1)$ is called the ``inner product'' of stuff types, because equipping the category of stuff types with this operation makes it a categorified version of the Hilbert space of a quantum harmonic oscillator. \hypertarget{HoTTCauchyProduct}{}\paragraph*{{Cauchy product}}\label{HoTTCauchyProduct} \begin{defn} \label{HoTTCauchyProduct}\hypertarget{HoTTCauchyProduct}{} The \emph{Cauchy product} of species is given by sending two species $f,g$ as in def. \ref{HoTTSpecies} to the species given by \begin{displaymath} \itexarray{ (f \cdot g) &:& X \times Y \to FinSet \\ (f \cdot g) &:& (x, y) \mapsto f(x) + g(y) } \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The Cauchy product, def. \ref{HoTTCauchyProduct}, is eqivalently the \href{%28infinity,n%29-category+of+correspondences#PhasedTensorProduct}{phased tensor product} on the slice over the [[symmetric monoidal category|symmetric monoidal]] groupoid $(FinSet, \coprod)$. \end{remark} \begin{example} \label{}\hypertarget{}{} For [[stuff types]] $\Phi$, $\Psi$, their Cauchy product, def. \ref{HoTTCauchyProduct}, is equal to \begin{displaymath} \sum_{A, U, V : FinSet} \sum_{p : U + V = A} (\Phi(U) \times \Psi(V)) \end{displaymath} In this form the Cauchy product is discussed in (\hyperlink{AguiarMahajan10}{Aguiar-Mahajan 10, def. 8.5}, \hyperlink{AguiarMahajan12}{Aguiar-Mahajan 12, section 2.2}). [[monoids|Monoids]] and [[comonoid]] in the resulting [[monoidal category]] of species are discussed in (\hyperlink{AguiarMahajan10}{Aguiar-Mahajan 10, section 8.2}) and [[Hopf monoids]] in this category in (\hyperlink{AguiarMahajan12}{Aguiar-Mahajan 12, section 2.2}). This means that $\Phi\Psi$ stuff on a finite set is the stuff of ``being chopped in two, with $\Phi$ stuff on one part and $\Psi$ stuff on the other''. The generating function is \begin{displaymath} {|X \cdot Y|}(z) = {|X|}(z) \cdot {|Y|}(z) \,. \end{displaymath} \end{example} \hypertarget{composition}{}\paragraph*{{Composition}}\label{composition} The composition of two species is \begin{displaymath} \itexarray{ (f \tilde{\circ} g) &:& \bigg(\sum_{x:X}(Fin(card(f(x)) \to Y)\bigg) \to FinSet \\ (f \tilde{\circ} g) &:& (x, P, p) \mapsto \bigoplus_{i=1}^{card(f(x))}g(P(i)) } \end{displaymath} where $\bigoplus_{i=1}^{n}g(P(i))$ is the $n$-ary direct sum of the finite sets $g(P(i))$. For stuff types, this amounts to \begin{displaymath} \sum_{(A, C : FinSet)}\sum_{(B : Fin(card(C)) \to FinSet)} \bigg( (B\vdash_{card(C)}A) \times \Phi(C) \times \prod_{k : Fin(card(C))} \Psi(B(k)) \bigg) \end{displaymath} That is, $\Phi \tilde{\circ} \Psi$ stuff on a finite set is a partition of the set into $card(C)$ subsets, with $\Phi$ stuff on the partition and $\Psi$ stuff on each of the subsets. The generating function of the composition is \begin{displaymath} {|X \tilde{\circ} Y|}(z) = {|X|}({|Y|}(z)) \end{displaymath} This species is also called the [[plethysm]] product. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cardinality}{}\subsubsection*{{Cardinality}}\label{cardinality} Under [[groupoid cardinality]] \begin{displaymath} {|-|} : \infty Grpd_{tame} \to \mathbb{R} \end{displaymath} every (tame) [[∞-groupoid]] is mapped to a [[real number]] \begin{displaymath} X \mapsto {|X|} := \sum_{[x] \in \pi_0(X)}\prod_{i = 1}^{\infty} (\pi_i(X,x)^{(-1)^{i}}) \,. \end{displaymath} A species $\mathbf{X}$ assigns an [[∞-groupoid]] $\mathbf{X}_n$ to each [[natural number]] $n \in \mathbb{Z}$. Therefore under [[groupoid cardinality]] we may naturally think of a tame species as mapping to a [[power series]] \begin{displaymath} \mathbf{X} \mapsto {|\mathbf{X}|} := \sum_{n = 0}^{\infty} \frac{1}{n!} {|\mathbf{X}_n|} z^n \in \mathbb{R}[ [ z ] ] \,. \end{displaymath} This cardinality operation maps the above addition and multiplication of combinatorial species to addition and multiplication of [[power series]]. That [[coproduct]] of species maps to sum of their cardinalities is trivial. That [[Day convolution]] of species maps under cardinality to the product of their cardinality series depends a little bit more subtly on the combinatorial prefactors: \begin{displaymath} {| A \otimes B |} = {|A|} \cdot {|B|} = \sum_{n=0}^\infty \frac{1}{n!} \sum_{k+l = n} \frac{n!}{k! l!} {|A_k|} \cdot {|B_l|} \,. \end{displaymath} \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} \begin{itemize}% \item If in the definition of combinatorial species the domain [[core]]([[FinSet]]) is replaced with [[FinVect]] and also the presheaves are take with values in [[FinVect]] then one obtains the notion of \textbf{[[Schur functor]]}. \item Instead of $core(FinSet)$, we may choose as domain $\mathbf{B} A$ for a small category $A$, with objects $\langle a_i \rangle_{i \in I}$, for $I$ in $core(FinSet)$, i.e., finite families of objects of $A$. Also, instead of $Set$ valued presheaves, we may consider those valued in presheaves on a small category $B$. This joint generalisation yields what are called \textbf{generalised species}. These generalised species can be collected in a cartesian closed 2-category (\hyperlink{FGHW}{FGHW}). \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of species goes back to \begin{itemize}% \item [[André Joyal]], \emph{Une th\'e{}orie combinatoire des s\'e{}ries formelles} , Advances in Mathematics 42:1-82 (1981) , \href{http://www.ams.org/mathscinet-getitem?mr=633783}{MR84d:05025} \end{itemize} An expositional discussion can be found at \begin{itemize}% \item [[Todd Trimble]], \emph{Exponential Generating Function and Introduction to Species} (\href{http://topologicalmusings.wordpress.com/2009/03/28/number-of-idempotent-endofunctions/}{blog}) (scroll down a bit). \end{itemize} See also wikipedia: \href{http://en.wikipedia.org/wiki/Combinatorial_species}{combinatorial species} and \begin{itemize}% \item Fran\c{c}ois Bergeron, Gilbert Labelle, Pierre Leroux, \emph{Th\'e{}orie des esp\`e{}ces et combinatoire des structures arborescentes} , LaCIM, Montr\'e{}al (1994). English version: [[Combinatorial species and tree-like structures]], Cambridge University Press (1998). \item F. Bergeron, G. Labelle, P. Leroux, \emph{Introduction to the theory of species of structures}, 2008, \href{http://bergeron.math.uqam.ca/Site/bergeron_anglais_files/livre_combinatoire.pdf}{pdf} \item Fran\c{c}ois Bergeron, \emph{Species and variations on the theme of species}, invited talk at \href{http://www.itu.dk/research/theory/ctcs2004/}{Category Theory and Computer Science `04}, Copenhagen (2004). Slides (\href{http://bergeron.math.uqam.ca/Especes_trans.pdf}{pdf}). \item G. Labelle, \href{http://www.sms.cam.ac.uk/media/937;jsessionid=9540827CB40AC9F1E61BF944127EBAF4}{video} intro into combinatorial species at Newton Institute, Cambridge 2008 \item [[Marcelo Aguiar]], [[Swapneel Mahajan]], \emph{[[Monoidal Functors, Species and Hopf Algebras]]}, With forewords by [[Kenneth Brown]], [[Stephen Chase]], [[André Joyal]]. CRM Monograph Series \textbf{29} Amer. Math. Soc. 2010. lii+784 pp. (\href{http://www.math.cornell.edu/~maguiar/a.pdf}{author pdf}) \item [[Marcelo Aguiar]], [[Swapneel Mahajan]], \emph{Hopf monoids in the category of species} (\href{http://arxiv.org/abs/1210.3120}{arXiv:1210.3120}) \end{itemize} An application in computer science: \begin{itemize}% \item [[Brent Yorgey]], \emph{Random testing and beyond! with combinatorial species}, slides \href{http://www.cis.upenn.edu/~byorgey/talks/combtesting-ku-20091124.pdf}{pdf}; \emph{Species and functors and types, oh my}, article, \href{http://www.cis.upenn.edu/~byorgey/papers/species-pearl.pdf}{pdf} \end{itemize} Formalization in [[homotopy type theory]]: \begin{itemize}% \item [[Brent Yorgey]], \emph{Combinatorial Species and labelled structures.} (\href{http://ozark.hendrix.edu/~yorgey/pub/thesis.pdf}{pdf}) \item [[John Dougherty]], \emph{Species in HoTT} (\href{https://github.com/jdoughertyii/hott-species/blob/master/species.pdf?raw=true}{pdf}) (\href{https://github.com/jdoughertyii/hott-species}{formalization in Coq}) \end{itemize} An application in statistical mechanics: \begin{itemize}% \item W. Faris, \emph{Combinatorial species and cluster expansions}, Mosc. Math. J. \textbf{10}:4 (2010), 713--727 \href{http://www.ams.org/distribution/mmj/vol10-4-2010/faris.pdf}{pdf}, \href{http://www.ams.org/mathscinet-getitem?mr=2791054}{MR2791054} \end{itemize} Discussion in relation to [[Feynman diagrams]]: \begin{itemize}% \item [[John Baez]] and [[James Dolan]], From finite sets to Feynman diagrams, in \emph{Mathematics Unlimited - 2001 and Beyond}, vol. 1, eds. Bj\"o{}rn Engquist and Wilfried Schmid, Springer, Berlin, 2001, pp. 29-50. (\href{http://arxiv.org/abs/math.QA/0004133}{arXiv}) \end{itemize} Discussion of generalised species: \begin{itemize}% \item M. Fiore, N. Gambino, M. Hyland, G. Winskel, \emph{The cartesian closed bicategory of generalised species of structures}, (\href{http://www1.maths.leeds.ac.uk/~pmtng/Publications/generalised-species.pdf}{pdf}) \end{itemize} [[!redirects homotopical species]] [[!redirects (infinity,1) species]] [[!redirects ∞-species]] [[!redirects combinatorial species]] [[!redirects species of structure]] \end{document}