\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectral measure} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{real_spectral_measure}{real spectral measure}\dotfill \pageref*{real_spectral_measure} \linebreak \noindent\hyperlink{resolution_of_identity}{resolution of identity}\dotfill \pageref*{resolution_of_identity} \linebreak \noindent\hyperlink{spectral_measure_and_spectral_integral}{spectral measure and spectral integral}\dotfill \pageref*{spectral_measure_and_spectral_integral} \linebreak \noindent\hyperlink{spectrum_of_representations_of_groups_the_snag_theorem}{Spectrum of Representations of Groups, the SNAG Theorem}\dotfill \pageref*{spectrum_of_representations_of_groups_the_snag_theorem} \linebreak \noindent\hyperlink{the_case_of_the_translation_group}{The Case of the Translation Group}\dotfill \pageref*{the_case_of_the_translation_group} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\section*{{Idea}}\label{idea} Spectral measures are an essential tool of [[functional analysis]] on [[Hilbert space]]s. Spectral measures are projection-valued measures and are used to state various forms of [[spectral theorem]]s. In the following, let $\mathbb{H}$ be a [[Hilbert space]] and $\mathcal{B}(\mathcal{H})$ be the algebra of bounded linear operators on $\mathbb{H}$ and $\mathcal{P}(\mathcal{H})$ the orthogonal projections. \hypertarget{real_spectral_measure}{}\subsection*{{real spectral measure}}\label{real_spectral_measure} The following paragraphs explain the concept of a spectral measure in the real case, sufficient for [[spectral theorem]]s of [[selfadjoint operator]]s. \hypertarget{resolution_of_identity}{}\subsubsection*{{resolution of identity}}\label{resolution_of_identity} Do not confuse this concept with the [[partition of unity]] in [[differential geometry]]. definition: A \textbf{resolution of the identity operator} is a map $E: \mathbb{R} \to \mathcal{P}(\mathcal{H})$ satisfying the following conditions: \begin{enumerate}% \item (\textbf{monotony}): For $\lambda_1, \lambda_2 \in \mathbb{R}$ with $\lambda_1 \leq \lambda_2$ we have $E(\lambda_1) \leq E(\lambda_2)$. \item (\textbf{continuity from above}): for all $\lambda \in \mathbb{R}$ we have $s-\lim_{\epsilon \to 0, \epsilon \gt 0} E(\lambda + \epsilon) = E(\lambda)$. \item (\textbf{boundary condition}): $s-\lim_{\epsilon \to -\infty} E(\lambda) = 0$ and $s-\lim_{\epsilon \to \infty} E(\lambda) = \mathbb{1}$. \end{enumerate} If there is a finite $\mu \in \mathbb{R}$ such that $E_{\lambda} = 0$ for all $\lambda \leq \mu$ and $E_{\lambda} = \mathbb{1}$ for all $\lambda \geq \mu$, than the resolution is called \textbf{bounded}, otherwise \textbf{unbounded}. \hypertarget{spectral_measure_and_spectral_integral}{}\subsubsection*{{spectral measure and spectral integral}}\label{spectral_measure_and_spectral_integral} Let E be a spectral resolution and $I$ be a bounded interval in $\mathbb{R}$. The spectral measure of $I$ with respect to $E$ is given by \begin{displaymath} E(J):= \begin{cases} E(y-) - E(x) & \text{for }\quad I=(x,y) \\ E(y-) - E(x-) & \text{for }\quad I=[x,y) \\ E(y) - E(x) & \text{for }\quad I=(x,y] \\ E(y) - E(x-) & \text{for }\quad I=[x,y] \\ \end{cases} \end{displaymath} This allows us to define the integral of a step function $u = \sum_{k=1}^{n} \alpha_k \chi_{I_k}$ with respect to E as \begin{displaymath} \integral u(\lambda) dE(\lambda) := \sum_{k=1}^{n} \alpha_k E(I_k) \end{displaymath} The value of this integral is a bounded operator. As in conventional measure and integration theory, the integral can be extended from step functions to Borel-measurable functions. In this case one often used notation is \begin{displaymath} E(u) = \integral u(\lambda) dE(\lambda) \end{displaymath} For general function $u, E(u)$ need not be a bounded operator of course, the domain of $E(u)$ is (theorem): \begin{displaymath} D(E(u)) = \{ f \in \mathcal{H} : \int |u(\lambda)|^2 d\langle E(\lambda)f, f\rangle \lt \infty \} \end{displaymath} \hypertarget{spectrum_of_representations_of_groups_the_snag_theorem}{}\section*{{Spectrum of Representations of Groups, the SNAG Theorem}}\label{spectrum_of_representations_of_groups_the_snag_theorem} The SNAG theorem is necessary to explain the spectrum condition of the [[Haag-Kastler axioms]]. Let $\mathcal{G}$ be a locally compact, abelian topological group, $\hat \mathcal{G}$ the character group of $\mathcal{G}$, $\mathcal{H}$ a Hilbert space and $\mathcal{U}$ an unitary representation of $\mathcal{G}$ in the algebra of bounded operators of $\mathcal{H}$. The following theorem is sometimes called (classical) \textbf{SNAG} theorem (SNAG = Stone-Naimark-Ambrose-Godement): \begin{theorem} \label{specmeasure}\hypertarget{specmeasure}{} \begin{displaymath} \mathcal{U}(g) = \int_{\chi\in\hat \mathcal{G}} \langle g, \chi\rangle \mathcal{P}(d\chi) \qquad \forall g \in \mathcal{G} \end{displaymath} \end{theorem} The equality holds in the weak sense, i.e. the integral converges in the weak operator topology. The \textbf{spectrum} of $\mathcal{U}(\mathcal{G})$, denoted by $spec\mathcal{U}(\mathcal{G})$, is defined to be the support of this spectral measure $\mathcal{P}$. \hypertarget{the_case_of_the_translation_group}{}\subsection*{{The Case of the Translation Group}}\label{the_case_of_the_translation_group} The groups of translations $\mathcal{T}$ on $\R^n$ is both isomorph to $\R^n$ and to it's own character group, every character is of the form $a \mapsto exp(i \langle a, k\rangle)$ for a fixed $k \in \R^n$. So in this case theorem \ref{specmeasure} becomes: \begin{displaymath} \mathcal{U}(t) = \int_{k\in \R^n} e^{i \langle t, k\rangle} \mathcal{P}(k) \qquad \forall t \in \mathcal{T} \end{displaymath} This allows us to talk about the support of the spectral measure, i.e. the spectrum of $\mathcal{U}(\mathcal{T})$, as a subset of $\R^n$. \hypertarget{references}{}\subsection*{{References}}\label{references} See also [[projection measure]]. The theorem \ref{specmeasure} is theorem 4.44 in the following classic book: \begin{itemize}% \item Gerald B. Folland, \emph{A course in abstract harmonic analysis}, Studies in Adv. Math. CRC Press 1995, \href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0857.43001&format=complete}{Zbl} \item A. A. Kirillov, A. D. Gvi\v{s}iani, (theorems and exercises in functional analysis), Moskva, Nauka 1979, 1988 \end{itemize} [[!redirects spectral measures]] \end{document}