\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectral sequence of a filtered stable homotopy type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{FilteredObjectsAndTheirChainComplexes}{(Co-)Filtered objects and their (co-)chain complexes}\dotfill \pageref*{FilteredObjectsAndTheirChainComplexes} \linebreak \noindent\hyperlink{SpectralSequenceOfAFilteredObject}{Spectral sequence of a filtered object}\dotfill \pageref*{SpectralSequenceOfAFilteredObject} \linebreak \noindent\hyperlink{SpectralSequenceOfACofilteredObject}{Spectral sequence of a cofiltered object}\dotfill \pageref*{SpectralSequenceOfACofilteredObject} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{CanonicalCosimplicialResolutionOfEInfinityAlgebras}{Canonical cosimplicial resolution of $E_\infty$-algebras}\dotfill \pageref*{CanonicalCosimplicialResolutionOfEInfinityAlgebras} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Each [[filtered object|filtering]] on an [[object]] $X$ in a suitable [[stable (∞,1)-category]] $\mathcal{C}$ (a \emph{[[stable homotopy type]]} $X$ such as a [[spectrum object]], in particular possibly a [[chain complex]]) induces a [[spectral sequence]] whose first page consists of the [[homotopy groups]] of the [[homotopy cofibers]] of the filtering and which under suitable conditions converges to the [[homotopy groups]] of the total object $X$. This is a generalization of the traditional [[spectral sequence of a filtered complex]] to which it reduces for $\mathcal{C} = Ch_\bullet(\mathcal{A})$ an [[(∞,1)-category of chain complexes]] [[presentable (infinity,1)-category|presented]] in the projective [[model structure on chain complexes]]. Therefore the whole zoo of traditional spectral sequences that in turn are special cases of that of a filtered complex (see at \emph{\href{spectral+sequence#Examples}{spectral sequence -- Examples}}) is all subsumed by the concept of spectral sequence of a filtered stable homotopy type. Moreover, by applying general [[(∞,1)-category theory|(∞,1)-categorical]] notion to naturally arising towers (such as the [[Whitehead tower]], the [[chromatic tower]]) it naturally produces more specialized spectral sequences (such as the [[Atiyah-Hirzebruch spectral sequence]], the [[chromatic spectral sequence]], etc.). Specifically, applied to a [[coskeleton]] tower of a dual [[Cech nerve]] of an [[E-∞ algebra]] $E$ it naturally produces the $E$-[[Adams spectral sequence]]. See the discussion of the \emph{\hyperlink{Examples}{Examples}} below. Therefore in [[(∞,1)-category theory]] one finds a lucky coincidence of historical terminology: \emph{[[spectral sequences]] are essentially [[sequential diagram|sequences]] of [[spectra]]}, when considered on homotopy groups. The general construction can be summarized as follows: Any [[homological functor]] \begin{displaymath} \mathcal{C}\to\mathcal{A} \end{displaymath} from a [[stable (∞,1)-category]] to an [[abelian category]] induces a functor \begin{displaymath} Filt(\mathcal{C}) \to SpSeq(\mathcal{A}) \end{displaymath} from the stable (∞,1)-category of [[filtered object in an (∞,1)-category|filtered objects]] in $\mathcal{C}$ to the abelian category of bigraded [[spectral sequence|spectral sequences]] in $\mathcal{A}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let throughout $\mathcal{C}$ be a [[stable (∞,1)-category]], $\mathcal{A}$ an [[abelian category]], and $\pi \;\colon\; \mathcal{C}\longrightarrow \mathcal{A}$ a [[homological functor]] on $\mathcal{C}$, i.e., a functor that transforms every [[cofiber sequence]] \begin{displaymath} X\to Y\to Z\to \Sigma X \end{displaymath} in $\mathcal{C}$ into a long exact sequence \begin{displaymath} \dots \to \pi(X)\to \pi(Y)\to \pi(Z)\to \pi(\Sigma X) \to \dots \end{displaymath} in $\mathcal{A}$. We write $\pi_n=\pi\circ \Sigma^{-n}$. \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item $\mathcal{C}$ is arbitrary, $\mathcal{A}$ is the category of [[abelian groups]] and $\pi$ is taking the 0th [[homotopy group]] $\pi_0 \mathcal{C}(S,-)$ of the [[mapping spectrum]] out of some [[object]] $S\in\mathcal{C}$ \item $\mathcal{C}$ is equipped with a [[t-structure]], $\mathcal{A}$ is the [[heart of a stable (∞,1)-category|heart]] of the t-structure, and $\pi$ is the canonical functor. \item $\mathcal{C} = D(\mathcal{A})$ is the [[derived category]] of the abelian category $\mathcal{A}$ and $\pi=H_0$ is the degree-0 [[chain homology]] functor. \item Any of the above with $\mathcal{C}$ and $\mathcal{A}$ replaced by their [[opposite categories]]. \end{itemize} \end{example} \hypertarget{FilteredObjectsAndTheirChainComplexes}{}\subsubsection*{{(Co-)Filtered objects and their (co-)chain complexes}}\label{FilteredObjectsAndTheirChainComplexes} \begin{defn} \label{GeneralizedFilteredObject}\hypertarget{GeneralizedFilteredObject}{} A \emph{[[filtered object in an (∞,1)-category]]} in $\mathcal{C}$ is an [[object]] $X \in \mathcal{C}$ together with a [[sequential diagram]] $X \colon (\mathbb{Z}, \lt) \to \mathcal{C}$ \begin{displaymath} \cdots X_{n-1} \to X_n \to X_{n+1} \to \cdots \end{displaymath} and an [[equivalence in an (infinity,1)-category|equivalence]] \begin{displaymath} X \coloneqq \underset{\rightarrow}{\lim}_n X_n \end{displaymath} between $X$ and the [[(∞,1)-colimit]] of this sequence. (The sequence itself is \emph{the filtering on $X$}.) Dually, a \emph{[[filtered object in an (∞,1)-category|co-filtered object in an (∞,1)-category]]} in $\mathcal{C}$ is an [[object]] $X \in \mathcal{C}$ together with a [[sequential diagram]] $X \colon (\mathbb{Z}, \lt) \to \mathcal{C}$ \begin{displaymath} \cdots X_{n-1} \to X_n \to X_{n+1} \to \cdots \end{displaymath} and an [[equivalence in an (infinity,1)-category|equivalence]] \begin{displaymath} X \coloneqq \underset{\leftarrow}{\lim}_n X_n \end{displaymath} between $X$ and the [[(∞,1)-limit]] of this sequence. (The sequence itself is \emph{the co-filtering on $X$}.) \end{defn} This appears as ([[Higher Algebra|Higher Algebra, def. 1.2.2.9]]). The notions are equivalent under replacing $\mathcal{C}$ by its [[opposite category]] $\mathcal{C}^{op}$. \begin{remark} \label{FilteredObjectInModelCategory}\hypertarget{FilteredObjectInModelCategory}{} If $\mathcal{C}$ is [[presentable (infinity,1)-category|presented]] by a sufficiently nice [[model category]] $C$ (for instance a [[combinatorial model category]]), then [[(∞,1)-colimits]] in $\mathcal{C}$ are computed by [[homotopy colimits]] in $C$. These in turn are computed as ordinary [[colimits]] in $C$ over a cofibrant [[diagram]] in the [[projective model structure on functors]]. Specifically, as discussed at \emph{\href{homotopy+limit#SequentialHocolims}{homotopy limit -- Examples -- Over sequential diagrams}} a cofibrant resolution of a [[sequential diagram]] $(\mathbb{N}, \leq) \to C$ is a sequential diagram all whose whose objects are cofibrant and all whose morphisms are cofibrations in $C$ \begin{displaymath} \emptyset \stackrel{cof}{\to} X_0 \stackrel{cof}{\to} \cdots \to X^C_{n-1} \stackrel{cof}{\to} X_{n}^C \stackrel{cof}{\to} X_{n+1}^C \to \cdots \,, \end{displaymath} where $X_n^C \in C$ denotes an object in the model category presenting the given object $X_n \in \mathcal{C}$. Moreover, in many [[model categories]] that appear in practice the cofibrations are in particular [[monomorphisms]], this is the case in particular in a projective [[model structure on chain complexes]]. In these cases then a filtering on an object $X \in \mathcal{C}$ in the abstract sense of [[(∞,1)-categories]] is presented by a [[filtered object]] $X^C \in C$ in the sense of plain [[category theory]]. The intrinsic definition \ref{GeneralizedFilteredObject} makes manifest however that the [[monomorphism]]-aspect here is just a means of a presentation of the filtering and not an intrinsic aspect of the [[homotopy theory]]. \end{remark} \begin{defn} \label{ChainComplexInStableInfinityCategory}\hypertarget{ChainComplexInStableInfinityCategory}{} Let $I$ be a [[linearly ordered set]]. An \emph{$I$-chain complex} in a [[stable (∞,1)-category]] $\mathcal{C}$ is an [[(∞,1)-functor]] \begin{displaymath} F \;\colon\; I^{\Delta[1]} \longrightarrow \mathcal{C} \end{displaymath} from the subposet of $I \times I$ on pairs of elements $i \leq j$, such that \begin{enumerate}% \item for each $n \in I$, $F(n,n) \simeq 0$ is the [[zero object]]; \item for all $i \leq j \leq k$ the induced [[diagram]] \begin{displaymath} \itexarray{ & F(i,j) &\longrightarrow& F(i,k) \\ & \downarrow && \downarrow \\ 0 \simeq & F(j,j) &\longrightarrow& F(j,k) } \end{displaymath} is a [[homotopy pushout]] square (hence equivalently, by [[stable (infinity,1)-category|stability]], a [[homotopy pullback]]). \end{enumerate} Write \begin{displaymath} Gap(I,\mathcal{C}) \hookrightarrow Func(I^{\Delta[1]}, \mathcal{C}) \end{displaymath} for the [[full sub-(∞,1)-category]] of diagrams satisfying these conditions. \end{defn} This is [[Higher Algebra|Higher Algebra, def. 1.2.2.2]]. \begin{remark} \label{MoreSquaresArePushouts}\hypertarget{MoreSquaresArePushouts}{} The conditions in def. \ref{ChainComplexInStableInfinityCategory} imply by the [[pasting law]] that also all squares \begin{displaymath} \itexarray{ F(i,k) &\longrightarrow& F(i,l) \\ \downarrow && \downarrow \\ F(j,k) &\longrightarrow& F(j,l) } \end{displaymath} for all $i \leq k$ and $k \leq l$ are [[homotopy pushout]] squares. \end{remark} \begin{defn} \label{ChainComplexInducedFromZComplex}\hypertarget{ChainComplexInducedFromZComplex}{} Given a $\mathbb{Z}$-chain complex $F$ in $\mathcal{C}$ as in def. \ref{ChainComplexInStableInfinityCategory}, define a [[sequential diagram]] in the ([[triangulated category|triangulated]]) [[homotopy category of an (infinity,1)-category|homotopy category]] $Ho(\mathcal{C})$ of $\mathcal{C}$ \begin{displaymath} C_\bullet \;\colon\; (\mathbb{Z}, \leq)^{op} \longrightarrow Ho(\mathcal{C}) \end{displaymath} by setting \begin{displaymath} C_n \coloneqq \Sigma^{-n} F(n-1,n) \in Ho(\mathcal{C}) \end{displaymath} and taking \begin{displaymath} d_n \coloneqq \Sigma^{-n} \delta_n \;\colon\; C_n \longrightarrow C_{n-1} \end{displaymath} to be the $n$-fold de-[[suspension]] of the [[connecting homomorphisms]] of the defining [[homotopy fiber sequences]] \begin{displaymath} F(n-1,n) \to F(n-1, n+1) \to F(n,n+1) \,, \end{displaymath} hence the $(n+1)$-fold de-[[suspension]] of the morphism $\delta_n$ in the following [[pasting]] of [[homotopy pushouts]] \begin{displaymath} \itexarray{ F(n-1,n) &\longrightarrow& F(n-1,n+1) &\to& 0 \\ \downarrow && \downarrow && \downarrow \\ 0 &\longrightarrow& F(n,n+1) &\stackrel{\delta_n}{\longrightarrow}& \Sigma F(n-1,n) } \end{displaymath} where the total outer [[homotopy pushout]] exhibits the [[suspension]] of $F(n-1,n)$, by the [[pasting law]]. \end{defn} \begin{prop} \label{ZComplexInCInducedChainComplexInHoC}\hypertarget{ZComplexInCInducedChainComplexInHoC}{} The sequence $C_\bullet$ in def. \ref{ChainComplexInducedFromZComplex} is a [[chain complex]] in that the $d_\bullet$ are [[differentials]], hence in that for all $n \in \mathbb{Z}$ we have that the composite \begin{displaymath} d_n \circ d_{n+1} = 0 \end{displaymath} is the [[zero morphism]] in the [[triangulated category]] $Ho(\mathcal{C})$. \end{prop} ([[Higher Algebra|Higher Algebra, remark 1.2.2.3]]) \begin{proof} Consider the [[pasting]] [[diagram]] \begin{displaymath} \itexarray{ F(n-2,n) &\longrightarrow& F(n-2,n+1) &\longrightarrow& 0 \\ \downarrow &(c)& \downarrow && \downarrow \\ F(n-1,n) &\longrightarrow& F(n-1,n+1) &\longrightarrow& 0 \\ \downarrow &(c)& \downarrow &(c)& \downarrow \\ 0 &\longrightarrow& F(n,n+1) &\underset{\delta_n}{\longrightarrow}& \Sigma F(n-1,n) } \end{displaymath} where the squares labeled ``c'' are (co-)cartesian ([[homotopy pushouts]]) ( by def. \ref{ChainComplexInducedFromZComplex} and by remark \ref{MoreSquaresArePushouts} and ). Notice that the [[homotopy pushout]] of the outermost [[span]] gives the [[suspension]] \begin{displaymath} \itexarray{ F(n-2,n) &\longrightarrow& 0 \\ \downarrow &(c)& \downarrow \\ 0 &\longrightarrow& \Sigma F(n-2,n) } \,. \end{displaymath} Therefore we have two paths of morphisms of span diagrams, the first is \begin{displaymath} \left( \itexarray{ F(n-2,n) &\to& F(n-2,n+1) \\ \downarrow \\ 0 } \right) \to \left( \itexarray{ F(n-2,n) &\to& 0 \\ \downarrow \\ 0 } \right) \to \left( \itexarray{ F(n-1,n) &\to& 0 \\ \downarrow \\ 0 } \right) \end{displaymath} which gives on [[homotopy pushouts]] \begin{displaymath} F(n,n+1) \longrightarrow \Sigma F(n-2,n) \longrightarrow \Sigma F(n-1,n) \end{displaymath} and the second is \begin{displaymath} \left( \itexarray{ F(n-2,n) &\to& F(n-2,n+1) \\ \downarrow \\ 0 } \right) \to \left( \itexarray{ F(n-1,n) &\to& F(n-1,n+1) \\ \downarrow \\ 0 } \right) \to \left( \itexarray{ F(n-1,n) &\to& 0 \\ \downarrow \\ 0 } \right) \end{displaymath} which on homotopy pushouts is \begin{displaymath} F(n,n+1) \stackrel{\simeq}{\longrightarrow} F(n,n+1) \stackrel{\delta_n}{\longrightarrow} \Sigma F(n-1,n) \end{displaymath} (all by the [[pasting law]]). By the commutativity of the original pasting diagram these two paths are equivalent. Therefore on homotopy pushouts this exhibits a factorization of $\delta_n$ through $\Sigma F(n-2,n)$: \begin{displaymath} \itexarray{ F(n,n+1) &\longrightarrow& \Sigma F(n-2,n) \\ & {}_{\mathllap{\delta_n}}\searrow & \downarrow \\ && \Sigma F(n-1,n) } \,. \end{displaymath} Pasting this to the homotopy pushout that defines $\Sigma \delta_{n-1}$ \begin{displaymath} \itexarray{ F(n,n+1) &\longrightarrow& \Sigma F(n-2,n) &\longrightarrow& 0 \\ & {}_{\mathllap{\delta_n}}\searrow & \downarrow &(c)& \downarrow \\ && \Sigma F(n-1,n) &\underset{\Sigma \delta_{n-1}}{\longrightarrow}& \Sigma^2 F(n-2,n-1) } \end{displaymath} and then suspending the result $n$ times yields a diagram that exhibits a null-homotopy \begin{displaymath} d_{n-1} \circ d_n \simeq 0 \end{displaymath} in $\mathcal{C}$. \end{proof} The following proposition observes that the $\mathbb{Z}$-chain complexes of def. \ref{ChainComplexInStableInfinityCategory} are, despite the explict appearance of square diagrams, equivalently already determined by a [[sequential diagram]]. \begin{prop} \label{ChainComplexesFromFilteredObjects}\hypertarget{ChainComplexesFromFilteredObjects}{} Consider the inclusion of [[posets]] \begin{displaymath} (\mathbb{Z}, \leq) \to (\mathbb{Z}, \leq)^{\Delta[1]} \end{displaymath} given by \begin{displaymath} n \mapsto (-\infty, n) \,. \end{displaymath} The induced [[(∞,1)-functor]] \begin{displaymath} Func((\mathbb{Z}\cup \{-\infty\}, \leq)^{\Delta[1]} , \mathcal{C}) \longrightarrow Func((\mathbb{Z}, \leq), \mathcal{C}) \end{displaymath} restricts to an [[equivalence of (∞,1)-categories|equivalence]] between the (∞,1)-category $Gap(\mathbb{Z},\mathcal{C})$ of $\mathbb{Z}\cup \{\infty\}$-chain complexes in $\mathcal{C}$ (def. \ref{ChainComplexInStableInfinityCategory}) and that of filtered objects in $\mathcal{C}$ (def. \ref{GeneralizedFilteredObject}). The equivalence is given by left and right [[(∞,1)-Kan extension]]. \end{prop} This is [[Higher Algebra|Higher Algebra, lemma 1.2.2.4]]. \begin{remark} \label{FromSequencesToZComplexes}\hypertarget{FromSequencesToZComplexes}{} The inverse functor can be described informally as follows: given a filtered object $X_\bullet$, the associated chain complex $X(\bullet,\bullet)$ is given by taking each entry $X(n,n+r)$ to be given by the [[homotopy cofiber]] of $X_n \to X_{n+r}$ \begin{displaymath} X(n, n+r) = \operatorname{cofib}(X_n\to X_{n+r}) \end{displaymath} because that makes the squares \begin{displaymath} \itexarray{ & X(-\infty,n) &\longrightarrow& X(-\infty,n+r) \\ & \downarrow && \downarrow \\ 0 \simeq & X(n, n) &\longrightarrow& X(n,n+r) } \end{displaymath} be [[homotopy pushout]] squares. \end{remark} \hypertarget{SpectralSequenceOfAFilteredObject}{}\subsubsection*{{Spectral sequence of a filtered object}}\label{SpectralSequenceOfAFilteredObject} We discuss now how in the presence of [[sequential colimits]], every [[filtered object in an (infinity,1)-category|filtered object]] induces a [[spectral sequence]] which converges to its [[homotopy groups]], equipped with the induced filtering. The discussion for co-filtered objects is formally dual, but also spelled out \hyperlink{SpectralSequenceOfACofilteredObject}{below}, for reference. \begin{remark} \label{LongExactSequencesOfHomotopyGroups}\hypertarget{LongExactSequencesOfHomotopyGroups}{} Let $X_\bullet$ be a filtered object in the sense of def. \ref{GeneralizedFilteredObject}. Write $X(\bullet,\bullet)$ for the corresponding $\mathbb{Z}$-complex, according to prop. \ref{ChainComplexesFromFilteredObjects}. Then for all $i \leq j \leq k$ there is a [[long exact sequence of homotopy groups]] in $\mathcal{A}$ of the form \begin{displaymath} \cdots \to \pi_n X(i,j) \to \pi_n X(i,k) \to \pi_n X(j,k) \to \pi_{n-1}X(i,j) \to \cdots \,. \end{displaymath} \end{remark} \begin{defn} \label{TheSpectralSequence}\hypertarget{TheSpectralSequence}{} Define for $p,q \in \mathbb{Z}$ and $r \geq 1$ an object $E_r^{p,q} \in \mathcal{A}$ by the canonical \href{abelian+category#FactorizationOfMorphisms}{epi-mono factorization} \begin{displaymath} \pi_{p+q} X(p-r,p) \twoheadrightarrow E_r^{p,q} \hookrightarrow \pi_{p+q} X(p-1, p+r-1) \end{displaymath} in the [[abelian category]] $\mathcal{A}$, of the morphism $X((p-r,p) \leq (p-1,p+r-1))$, so that $E_r^{p,q}$ is the [[image]] of this morphism. Moreover, define [[morphisms]] \begin{displaymath} d_r \;\colon\; E_r^{p,q} \to E_r^{p-r, q+r-1} \end{displaymath} to be the restriction (the [[image]] on morphisms) of the [[connecting homomorphism]] \begin{displaymath} \itexarray{ \pi_{p+q} X(p-r, p) &\longrightarrow& E_r^{p,q} &\longrightarrow& \pi_{p+q} X(p-1, p+r-1) \\ {}^{\mathllap{\delta}}\downarrow && \downarrow^{\mathrlap{d_r}} && \downarrow^{\mathrlap{\delta}} \\ \pi_{p+q-1} X(p-2r, p-r) &\longrightarrow& E_r^{p-r,q+r-1} &\longrightarrow& \pi_{p+q-1} X(p-r-1, p-1) } \end{displaymath} in the [[long exact sequence of homotopy groups]] of remark \ref{LongExactSequencesOfHomotopyGroups}, \begin{itemize}% \item on the left for the case $(i \leq j \leq k) = (p-2r \leq p - r \leq p)$ \item on the right for the case $(i \leq j \leq k) = (p - r - 1 \leq p - 1 \leq p + r - 1)$. \end{itemize} \end{defn} \begin{remark} \label{FirstPageOfTheSpectralSequence}\hypertarget{FirstPageOfTheSpectralSequence}{} For $r = 1$ def. \ref{TheSpectralSequence} reduces to \begin{displaymath} \begin{aligned} E_1^{p,q} & \simeq \pi_{p+q} X(p-1,p) \\ & \simeq \pi_{q} (\Sigma^{-p} X(p-1,p)) \\ & \simeq \pi_{q} (C_{p}) \end{aligned} \end{displaymath} where $C_p$ is the $p$th element in the [[chain complex]] associated with $X(\bullet,\bullet)$ according to def. \ref{ChainComplexInducedFromZComplex}. \end{remark} ([[Higher Algebra|Higher Algebra, construction 1.2.2.6]]) \begin{prop} \label{ExistenceOfTheSpectralSequence}\hypertarget{ExistenceOfTheSpectralSequence}{} In def. \ref{TheSpectralSequence} we have $d^r\circ d^r = 0$ for all $r \geq 1$ and all $p,q \in \mathbb{Z}$. Moreover, there are [[natural isomorphisms]] (natural in $X_\bullet$) \begin{displaymath} E_{r+1}^{p,q} \simeq \frac{ ker(d_r \colon E_r^{p,q} \to E_r^{p-r, q+r-1}) }{ im(d_r \colon E_r^{p+r, q-r+1} \to E_r^{p,q}) } \,. \end{displaymath} Thus, $\{E_r^{\bullet,\bullet}\}_{r\geq 1}$ is a homology [[spectral sequence]] in the [[abelian category]] $\mathcal{A}$, functorial in the filtered object $X_\bullet$, with first page \begin{displaymath} \begin{aligned} E_1^{p,q} &= \pi_{p+q} \operatorname{cofib}(X_{p-1}\to X_{p}) \\ & \simeq \pi_q (C_p) \end{aligned} \,. \end{displaymath} \end{prop} ([[Higher Algebra|Higher Algebra, prop. 1.2.2.7]]) \begin{proof} Since $d_r$ is by definition the [[image]] morphism of a [[connecting homomorphism]], for showing $d_r \circ d_r = 0$ it suffices to show that the connecting homomorphisms compose to the [[zero morphism]], $\delta_r \circ \delta_r \simeq 0$. This is the same argument as in the proof of prop. \ref{ZComplexInCInducedChainComplexInHoC}, generalized from vertical steps of length 1 to vertical steps of length $r$. Explicitly, we have the pasting diagram \begin{displaymath} \itexarray{ F(p-2r,p) &\longrightarrow& F(p-2r,p+1) &\longrightarrow& 0 \\ \downarrow &(c)& \downarrow && \downarrow \\ F(p-r,n) &\longrightarrow& F(p-r,p+1) &\longrightarrow& 0 \\ \downarrow &(c)& \downarrow &(c)& \downarrow \\ 0 &\longrightarrow& F(p,p+r) &\underset{\delta_r}{\longrightarrow}& \Sigma F(p-r,p) } \end{displaymath} where the squares labeled ``c'' are (co-)cartesian ([[homotopy pushouts]]). By the [[universal property]] of the pushout, this induces a factorization \begin{displaymath} \itexarray{ F(p,p+1) &\longrightarrow& \Sigma F(p-2r,p) \\ & {}_{\mathllap{\delta_r}}\searrow & \downarrow \\ && \Sigma F(p-r,p) } \,. \end{displaymath} Pasting this in turn to the homotopy pushout that defines $\Sigma \delta_{p-r}$ \begin{displaymath} \itexarray{ F(p,p+1) &\longrightarrow& \Sigma F(p-2r,p) &\longrightarrow& 0 \\ & {}_{\mathllap{\delta_r}}\searrow & \downarrow &(c)& \downarrow \\ && \Sigma F(p-r,p) &\underset{\Sigma \delta_{r}}{\longrightarrow}& \Sigma^2 F(p-2r,p-1) } \end{displaymath} and then suspending the result $n$ times yields a diagram that exhibits a null-homotopy \begin{displaymath} \delta_{r} \circ \delta_r \simeq 0 \end{displaymath} in $\mathcal{C}$. Next, to show the homology isomorphisms; consider for fixed $p,q,r$ the usual abbreviation \begin{displaymath} C \coloneqq E_r^{p,q} \end{displaymath} for the $r$-relative [[chains]], \begin{displaymath} Z \coloneqq ker(d_r \colon E_r^{p,q} \to E_r^{p-r, q+r-1}) \end{displaymath} for the $r$-relative [[cycles]] and \begin{displaymath} B \coloneqq im(d_r \colon E_r^{p+r, q-r+1} \to E_r^{p,q}) \end{displaymath} for the $r$-relative boundaries, all in bidegree $p,q$. We claim that the canonical maps induce a sequence of morphisms in $\mathcal{A}$ of the form \begin{displaymath} \pi_{p+q} X(p-r-1, p) \stackrel{\phi}{\to} Z \stackrel{\phi'}{\to} Z/B \stackrel{\psi'}{\to} C/B \stackrel{\psi}{\to} \pi_{p+q} X(p-1, p+r) \end{displaymath} and that $\phi'\circ \phi$ is an [[epimorphism]] and $\psi \circ \phi'$ is a [[monomorphism]]. By the uniqueness of the [[image]] factorization in the [[abelian category]] $\mathcal{A}$, this will prove the proposition. To see that $\pi_{p+q} X(p-r-1,p)$ is indeed in the [[kernel]] of $d_r$ consider the [[commuting diagram]] \begin{displaymath} \itexarray{ \pi_{p+q} X(p-r-1,p) &\longrightarrow& \pi_{p+q-1} X(p-2r, p- r-1) \\ \downarrow && \downarrow & \searrow \\ \pi_{p+q} X(p-r, p) &\longrightarrow& \pi_{p+q-1}X(p-2r, p-r) \\ \downarrow && \downarrow \\ E_r^{p,q} &\stackrel{d_r}{\longrightarrow}& E_r^{p-r, q+r-1} && \pi_{p+q-1} X(p - 2r, p-r) \\ && \downarrow & \swarrow \\ && \pi_{p+q-1} X(p - r - 1, p - 1) } \,. \end{displaymath} Since the bottom right morphism is a [[monomorphism]] by construction, the claim is equivalently that the total composite from top-left to bottom right is zero. By commutativity of the diagram this factors through the composite from top-right to bottom-right. As indicated, this in turn factors through two consecutive morphisms of an $(i \leq j \leq k)$-square, which by definition of $\mathbb{Z}$-chain complex is null-homotopic. By a dual argument one has that $\pi_{p+q}X(p-1, p+r)$ is in the [[coimage]] of $d_r$. This shows that we indeed have the above sequence of morphisms $\stackrel{\phi}{\to}\stackrel{\phi'}{\to}\stackrel{\psi'}{\to}\stackrel{\psi}{\to}$. It now remains to show that $\phi$ is an [[epimorphism]] (dually $\psi$ will be a [[monomorphism]].) (\ldots{}[[Higher Algebra|Higher Algebra, p. 41]]\ldots{}) \end{proof} We can now consider the convergence of the spectral sequence of prop. \ref{ExistenceOfTheSpectralSequence}. To state that efficiently, first consider the following definition \begin{defn} \label{FilteringOnHomotopyGroups}\hypertarget{FilteringOnHomotopyGroups}{} Given a [[filtered object in an (∞,1)-category|filtered object]], def. \ref{GeneralizedFilteredObject}, $X \simeq \underset{\longrightarrow}{\lim}_n X_n \in \mathcal{C}$, say that the induced [[filtered object|filtering]] on its [[homotopy groups]] $F^\bullet \pi_\bullet X$ is given by the [[images]] of the homotopy groups of the [[strata]] of $X$ \begin{displaymath} F^p \pi_{p+q}X \coloneqq im\left( \pi_{p+q} X_{p} \to \pi_{p+q} X \right) \,\,\, \in \mathcal{A} \,. \end{displaymath} \end{defn} ([[Higher Algebra|Higher Algebra, p. 43]]) \begin{prop} \label{ConvergenceOfTheSpectralSequence}\hypertarget{ConvergenceOfTheSpectralSequence}{} Assume that $\mathcal{C}$ admits all [[sequential colimits]] and that $\pi$ preserves these. Let $X \simeq \underset{\longrightarrow}{\lim}_n X_n$ be a [[filtered object in an (∞,1)-category|filtered object]], def. \ref{GeneralizedFilteredObject}, for filtering with $X_{n \lt 0} \simeq 0$. Then the spectral sequence of prop. \ref{ExistenceOfTheSpectralSequence}, converges to the [[homotopy groups]] of $X$ \begin{displaymath} E_1^{p,q} = \pi_{p+q} \operatorname{cofib}(X_{p-1}\to X_{p}) \simeq \pi_q (C_p) \;\;\Rightarrow\;\; \pi_{p+q} X \,, \end{displaymath} where the first page is identified following remark \ref{FirstPageOfTheSpectralSequence}. In detail, for all $p,q \in \mathbb{Z}$ the [[differentials]] $d_r \colon E_r^{p,q} \to E_r^{p-r, q+r-1}$ vanish for $r \gt p$, and the [[colimit]] (in $\mathcal{A}$) \begin{displaymath} E^{p,q}_\infty \coloneqq \underset{\longrightarrow}{\lim}_{r \gt p} E_r \end{displaymath} is [[isomorphism|isomorphic]] to the [[associated graded object]] of the filtered homotopy groups of def. \ref{FilteringOnHomotopyGroups}: \begin{displaymath} E^{p,q}_\infty \simeq F^p \pi_{p+q}(X) / F^{p-1} \pi_{p+q}(X) \,. \end{displaymath} \end{prop} This is due to ([[Higher Algebra|Higher Algebra, prop. 1.2.2.14]]). A quick review is in (\hyperlink{Wilson13}{Wilson 13, theorem 1.2.1}). \begin{proof} The assumption $X_{n \lt 0} \simeq 0$ implies that for $i,j \lt 0$ we have, by remark \ref{FromSequencesToZComplexes}, \begin{displaymath} X(i,j) \simeq cofib(X_i \to X_j) \simeq 0 \;\;\;\; for\, i,j \lt 0 \end{displaymath} and therefore it follows that $E_r^{p-r,q+r-1}$, being a [[quotient]] of $\pi_{p+q} X(p-2r, p-r)$, vanishes for $r \gt p$. The same assumption implies that \begin{displaymath} X(p-r,p) \simeq X_p \;\;\;\; for\, p \gt r \end{displaymath} and so $E_\infty^{p,q}$ is \begin{displaymath} E_\infty^{p,q} \simeq im\left( \pi_{p+q} X_p \to \pi_{p+q} Y \right) \end{displaymath} for \begin{displaymath} Y \coloneqq \underset{\longrightarrow}{\lim}_r X(p-1,p+r) \,. \end{displaymath} We need to show that this image is the [[associated graded object]] of the filtered homotopy groups. To that end, observe that the [[homotopy fiber sequences]] \begin{displaymath} X_{p-1} \to X_{p+r} \to X(p-1,p+r) \end{displaymath} for all $r$ give a homotopy fiber sequence under the colimit over $r$ of the form \begin{displaymath} X_{p-1} \to X \to Y \,. \end{displaymath} The corresponding [[long exact sequence of homotopy groups]] truncates on the left to read \begin{displaymath} 0 \to F^{p-1} \pi_{p+q}(X) \stackrel{ker(f')}{\hookrightarrow} \pi_{p+q} X \stackrel{f'}{\to} \pi_{p+q}Y \,. \end{displaymath} By construction the morphism $f'$ appearing here factors the morphism $f$ whose image we need to compute as \begin{displaymath} \itexarray{ && \pi_{p+q}X \\ & {}^{\mathllap{g}}\nearrow && \searrow^{\mathrlap{f'}} \\ \pi_{p+q} X(p) && \stackrel{f}{\longrightarrow} && \pi_{p+q} Y } \end{displaymath} Using these relation we can now express $E_\infty^{p,q} \simeq im(f)$ as: \begin{displaymath} \begin{aligned} E_\infty^{p,q} & \simeq im(f) \\ & \simeq im(f'|_{im(g)}) \\ & \simeq im(f'|_{F^p \pi_{p+q} X}) \\ & \simeq F^p \pi_{p+q}X/ker(f') \\ & \simeq F^p \pi_{p+q} X/F^{p-1} \pi_{p+q}X \end{aligned} \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} While historically the appearances of the root ``spectr-'' in ``[[spectral sequence]]'' and in ``[[spectrum]]'' ([[stable homotopy types]]) are unrelated, prop. \ref{ExistenceOfTheSpectralSequence} and prop. \ref{ConvergenceOfTheSpectralSequence} say that there is a lucky coincidence of terminology: \emph{Every sequence of spectra manifests itself on homotopy groups in a spectral sequence}. Moreover, the discussion below in \emph{\hyperlink{Examples}{Examples}} shows that also conversely, essentially every spectral sequence that appears in practice comes from a sequence of spectra this way. (See also the title of (\hyperlink{Wilson13}{Wilson 13})). \end{remark} \begin{remark} \label{}\hypertarget{}{} The spectral sequence above itself only actually depends to the [[triangulated category|triangulated]] [[homotopy category of an (infinity,1)-category|homotopy category]] $Ho(\mathcal{C})$. But its $\infty$-functorial dependence on the filtered object needs the full structure of the [[(∞,1)-category]] $\mathcal{C}$ \end{remark} \hypertarget{SpectralSequenceOfACofilteredObject}{}\subsubsection*{{Spectral sequence of a cofiltered object}}\label{SpectralSequenceOfACofilteredObject} We discuss here the dual notion to the spectral sequence of a filtered object above, now for a cofiltered object. \begin{quote}% The following does not just dualize but also change the indexing convention on top of dualization. Needs further discussion/harmonization. \end{quote} \begin{prop} \label{}\hypertarget{}{} Consider the inclusion of [[posets]] \begin{displaymath} (\mathbb{Z}, \leq) \to (\mathbb{Z}\cup \{\infty\}, \leq)^{\Delta[1]} \end{displaymath} given by \begin{displaymath} n \mapsto (n,\infty) \,. \end{displaymath} The induced [[(∞,1)-functor]] \begin{displaymath} Func((\mathbb{Z}\cup \{\infty\}, \leq)^{\Delta[1]}, \mathcal{C}) \longrightarrow Func((\mathbb{Z}, \leq), \mathcal{C}) \end{displaymath} restricts to an [[equivalence of (∞,1)-categories|equivalence]] between the (∞,1)-category of $\mathbb{Z}\cup \{\infty\}$-chain complexes in $\mathcal{C}$ (def. \ref{ChainComplexInStableInfinityCategory}) and that of generalized filtered objects in $\mathcal{C}$ (def. \ref{GeneralizedFilteredObject}). \end{prop} Given a filtered object $X_\bullet$, the associated chain complex $X(\bullet,\bullet)$ is given by the [[homotopy fiber]] \begin{displaymath} X(n, n+r) = \operatorname{fib}(X_n\to X_{n+r}). \end{displaymath} \begin{defn} \label{ExactCoupleForFilteredObject}\hypertarget{ExactCoupleForFilteredObject}{} For a cofiltered object $X_\bullet$, def. \ref{GeneralizedFilteredObject}, write \begin{displaymath} K_n \coloneqq fib(X_n \to X_{n+1}) \end{displaymath} for the [[homotopy fiber]] of the $n$th structure map, for all $n \in \mathbb{Z}$, and define an [[exact couple]] \begin{displaymath} \itexarray{ && \pi_\bullet(K_\bullet) \\ & \swarrow && \nwarrow \\ \pi_\bullet(X_\bullet) && \stackrel{}{\longrightarrow} && \pi_\bullet(X_\bullet) } \end{displaymath} where the maps are given by the long exact sequences \begin{displaymath} \cdots \to \pi_\bullet(X_{n+1}) \to \pi_\bullet(K_n) \to \pi_\bullet(X_n) \to \pi_\bullet(X_{n+1}) \to \pi_{\bullet+1}(K_n) \to \cdots \end{displaymath} \end{defn} This exact couple gives rise in the usual way to a spectral sequence. Let $X_\bullet$ be a cofiltered object. \begin{defn} \label{}\hypertarget{}{} Define for $p,q \in \mathbb{Z}$ and $r \geq 1$ the object $E^r_{p,q}$ by the canonical \href{abelian+category#FactorizationOfMorphisms}{epi-mono factorization} \begin{displaymath} \pi_{p} X(q-r+1,q+1) \twoheadrightarrow E^r_{p,q} \hookrightarrow \pi_{p} X(q, q+r) \end{displaymath} in the abelian category $\mathcal{A}$, and define the [[differential]] \begin{displaymath} d^r \;\colon\; E_{p,q}^r \to E_{p-1, q-r}^r \end{displaymath} to be the restriction of the [[connecting homomorphism]] \begin{displaymath} \pi_{p} X(q,q+r) \to \pi_{p-1} X(q-r, q) \end{displaymath} from the long exact sequence of remark \ref{LongExactSequencesOfHomotopyGroups},\newline for the case $i=q-r$, $j=q$, and $k=q+r$. \end{defn} \begin{prop} \label{}\hypertarget{}{} $d^r\circ d^r = 0$ and there are natural (in $X_\bullet$) isomorphisms \begin{displaymath} E^{r+1}\cong \operatorname{ker}(d^r)/\operatorname{im}(d^r). \end{displaymath} Thus, $\{E^r_{*,*}\}_{r\geq 1}$ is a bigraded [[spectral sequence]] in the [[abelian category]] $\mathcal{A}$, functorial in the filtered object $X_\bullet$, with \begin{displaymath} E^1_{p,q} = \pi_p \operatorname{fib}(X_q\to X_{q+1}), \qquad d^r: E^r_{p,q}\to E^r_{p-1,q-r}. \end{displaymath} \end{prop} If [[sequential limits]] and [[sequential colimits]] exist in $\mathcal{A}$, we can form the limiting term $E^\infty_{*,*}$ of this spectral sequence. On the other hand, the [[graded object]] $\pi_\bullet (X)$ admits a [[filtered object|filtration]] by \begin{displaymath} F_q \pi_p (X) = \operatorname{ker}(\pi_p (X)\to \pi_p(X_q)) \end{displaymath} and we would like to compare $E^\infty_{*,*}$ with the [[associated graded]] of this filtration. We say that \begin{defn} \label{WeakAndStrongConvergence}\hypertarget{WeakAndStrongConvergence}{} The spectral sequence \textbf{converges weakly} if there is a canonical isomorphism \begin{displaymath} E^\infty_{p,q} \cong F_q\pi_p(X)/ F_{q-1}\pi_p(X) \end{displaymath} for every $p,q\in\mathbb{Z}$. We say that the spectral sequence \textbf{converges strongly} if it converges weakly and if, in addition, the filtration $F_\bullet\pi_p(X)$ is complete on both sides, that is: \begin{displaymath} \underset{\rightarrow}{\lim}_q F_q\pi_p (X) \simeq \pi_p(X) \simeq \underset{\leftarrow}{\lim}_q F^q\pi_p (X), \end{displaymath} where $F^\bullet$ is the cofiltration. \end{defn} \begin{remark} \label{}\hypertarget{}{} The meaning of the word \emph{canonical} in def. \ref{WeakAndStrongConvergence} is somewhat subtle since, in general, there is no map from one side to the other. However, there always exists a canonical \emph{[[relation]]} between the two, and we ask that this relation be an isomorphism (see \hyperlink{HiltonStammbach}{Hilton-Stammbach, VIII.7}). \end{remark} \begin{prop} \label{FiltrationSpectralSequence}\hypertarget{FiltrationSpectralSequence}{} Let $\mathcal{C}$ be a [[stable (∞,1)-category]] and let $\pi:\mathcal{C}\to\mathcal{A}$ be a homological functor where $\mathcal{A}$ is an [[abelian category]] which admits [[sequential limits]]. Let $X_\bullet$ be a filtered object in $\mathcal{C}$ such that $\underset{\leftarrow}{\lim} X_\bullet$ exists. Suppose further that: \begin{enumerate}% \item For every $n$, the diagram $r\mapsto \operatorname{fib}(X_{n-r}\to X_n)$ has a limit in $\mathcal{C}$ and that limit is preserved by $\pi$. \item For every $n$, $\pi_n(X_r)=0$ for $r\gg 0$. \end{enumerate} Then the [[spectral sequence]] $\{E^r_{*,*}\}_{r\geq 1}$ in $\mathcal{A}$ converges strongly (def. \ref{WeakAndStrongConvergence}). We write: \begin{displaymath} E_{p,q}^1 = \pi_{p} \operatorname{fib}(X_q\to X_{q+1}) \Rightarrow \pi_{p} (\underset{\leftarrow}{\lim} X_\bullet) \end{displaymath} \end{prop} There is also a dual statement in which limits are replaced by colimits, but it is in fact a special case of the proposition with $\pi$ replaced by $\pi^{op}$. A proof of this proposition (in dual form) is given in ([[Higher Algebra|Higher Algebra, prop. 1.2.2.14]]). Review is in (\hyperlink{Wilson13}{Wilson 13, theorem 1.2.1}). \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{general}{}\subsubsection*{{General}}\label{general} [[!include Lurie spectral sequences -- table]] \begin{example} \label{}\hypertarget{}{} For $\mathcal{A}$ a good [[abelian category]] and $\mathcal{C} = Ch_\bullet(\mathcal{A})$ the [[(∞,1)-category of chain complexes]] in $\mathcal{A}$, we recover, by \ref{FilteredObjectInModelCategory}, the traditional notion of a \emph{[[spectral sequence of a filtered complex]]}. \end{example} ([[Higher Algebra|Higher Algebra, example 1.2.2.11]]). \begin{example} \label{}\hypertarget{}{} Let $\mathcal{C} = Spec^{op}$ be the opposite (∞,1)-category of spectra, let $\mathcal{A}$ be the opposite category of abelian groups, and let $\pi$ be the functor $[K,-]$ where $K$ is spectrum. Then condition (1) in Proposition \ref{FiltrationSpectralSequence} holds for all filtered objects if and only if $K$ is a [[finite spectrum]]. When the filtered object is the [[Whitehead tower]] of a spectrum $E$, the associated spectral sequence is the [[Atiyah-Hirzebruch spectral sequence]] with target $E^*(K)$. It is thus strongly convergent if $K$ is a finite spectrum. \end{example} \begin{example} \label{SpectralSequenceOfASimplicialStableHomotopyType}\hypertarget{SpectralSequenceOfASimplicialStableHomotopyType}{} For $\mathcal{C}$ a [[stable (∞,1)-category]] and $X_\bullet$ a [[simplicial object in an (∞,1)-category]] in $\mathcal{C}$, then the [[simplicial skeleta]] of $X$ give it the structure of a [[filtered object in an (∞,1)-category]]. The corresponding [[spectral sequence of a filtered stable homotopy type]] has as its first page the [[Moore complexes]] of the corresponding [[simplicial objects]] of [[homotopy groups]]. See at \emph{[[spectral sequence of a simplicial stable homotopy type]]}. \end{example} As a special case of example \ref{SpectralSequenceOfASimplicialStableHomotopyType} we have: \begin{example} \label{}\hypertarget{}{} The $E$-based [[Adams spectral sequence]] that approximates homotopy classes of maps between two spectra $X$ and $Y$ using a [[ring spectrum]] $E$ is a special case of the above spectral sequence, with $\mathcal{C}=Spec$, $\pi=[X,-]$, and the filtered object associated with the cosimplicial spectrum $E^{\wedge\bullet+1}\wedge Y$. Bousfield's theorems on the convergence of the Adams spectral sequence can be rephrased as giving sufficient conditions on $X$, $Y$, and $E$ for condition (1) in Proposition \ref{FiltrationSpectralSequence} to hold (see \hyperlink{Bousfield}{Bousfield, Theorems 6.6 and 6.10}). See \emph{[[J-homomorphism and chromatic homotopy]]} for an exposition. \end{example} \hypertarget{CanonicalCosimplicialResolutionOfEInfinityAlgebras}{}\subsubsection*{{Canonical cosimplicial resolution of $E_\infty$-algebras}}\label{CanonicalCosimplicialResolutionOfEInfinityAlgebras} We discuss now the special case of coskeletally filtered totalizations coming from the canonical cosimplicial objects induced from [[E-∞ algebras]] (dual [[Cech nerves]]/[[Sweedler corings]]/[[Amitsur complexes]]). In this form this appears as (\hyperlink{LurieLecture}{Lurie 10, theorem 2}). A review is in (\hyperlink{Wilson13}{Wilson 13, 1.3}). For the analog of this in the traditional formulation see (\hyperlink{Ravenel}{Ravenel, ch. 3, prop. 3.1.2}). \begin{defn} \label{FiltrationOfTotalizationByTotalizationOfCoskeleta}\hypertarget{FiltrationOfTotalizationByTotalizationOfCoskeleta}{} Given an [[cosimplicial object in an (∞,1)-category]] with [[(∞,1)-colimits]] \begin{displaymath} Y \;\colon\; \Delta \longrightarrow \mathcal{C} \end{displaymath} its [[totalization]] $Tot Y \simeq \underset{\leftarrow}{\lim}_n Y_n$ is [[filtered object in an (infinity,1)-category|filtered]], def. \ref{GeneralizedFilteredObject}, by the totalizations of its [[coskeleta]] \begin{displaymath} Tot Y \to \cdots \to Tot (cosk_2 Y) \to Tot (cosk_1 Y) \to Tot (cosk_0 Y) \to 0 \,. \end{displaymath} \end{defn} \begin{defn} \label{SpectralSequenceOfSimplicialStableHomotopyType}\hypertarget{SpectralSequenceOfSimplicialStableHomotopyType}{} The [[spectral sequence of a filtered stable homotopy type|filtration spectral sequence]], prop. \ref{FiltrationSpectralSequence}, applied to the filtration of a [[totalization]] by [[coskeleton|coskeleta]] as in def. \ref{FiltrationOfTotalizationByTotalizationOfCoskeleta}, we call the \emph{[[spectral sequence of a simplicial stable homotopy type]]}. \end{defn} ([[Higher Algebra|Higher Algebra, prop. 1.2.4.5]]) \begin{prop} \label{E2PageByMooreComplex}\hypertarget{E2PageByMooreComplex}{} The [[spectral sequence of a simplicial stable homotopy type]] has as first page/$E_1$-term the [[cohomology groups]] of the [[Moore complex]] associated with the [[cosimplicial objects]] of [[homotopy groups]] \begin{displaymath} E_2^{p,q} = H^p(\pi_q(Tot (cosk_\bullet(Y)))) \Rightarrow \pi_{p-q} Tot(Y) \,. \end{displaymath} \end{prop} By the discussion at \emph{[[∞-Dold-Kan correspondence]]} and \emph{[[spectral sequence of a filtered stable homotopy type]]}. This appears as ([[Higher Algebra|Higher Algebra, remark 1.2.4.4]]). Review is around (\hyperlink{Wilson13}{Wilson 13, theorem 1.2.4}). \begin{defn} \label{}\hypertarget{}{} Let $S$ be an [[E-∞ ring]] and let $E$ be an [[E-∞ algebra]] over $S$, hence an [[E-∞ ring]] equipped with a [[homomorphism]] \begin{displaymath} S \longrightarrow E \,. \end{displaymath} The \emph{canonical [[cosimplicial object]]} associated to this (the $\infty$-[[Cech nerve]]/[[Sweedler coring]]/[[Amitsur complex]]) is that given by the iterated [[smash product]]/[[tensor product]] over $S$: \begin{displaymath} E^{\wedge^{\bullet+1}_S} \;\colon\; \Delta \to \mathcal{C} \,. \end{displaymath} More generally, for $X$ an $S$-[[∞-module]], the canonical [[cosimplicial object]] is \begin{displaymath} E^{\wedge^{\bullet+1}_S}\wedge_S X \;\colon\; \Delta \to \mathcal{C} \,. \end{displaymath} \end{defn} \begin{prop} \label{FlatnessCondition}\hypertarget{FlatnessCondition}{} If $E$ is such that the self-[[generalized homology]] $E_\bullet(E) \coloneqq \pi_\bullet(E \wedge_S E)$ (the dual $E$-[[Steenrod operations]]) is such that as a [[module]] over $E_\bullet \coloneqq \pi_\bullet(E)$ it is a [[flat module]], then there is a [[natural equivalence]] \begin{displaymath} \pi_\bullet \left( E^{\wedge^{n+1}_S} \wedge_S X \right) \simeq E_\bullet(E^{\wedge^n_S}) \otimes_{E_\bullet} E_\bullet(X) \,. \end{displaymath} \end{prop} Reviewed for instance as (\hyperlink{Wilson13}{Wilson 13, prop. 1.3.1}). \begin{remark} \label{}\hypertarget{}{} This makes $(E_\bullet, E_\bullet(E))$ be the [[commutative Hopf algebroid]] formed by the $E$-[[Steenrod algebra]]. See there for more on this. \end{remark} \begin{example} \label{}\hypertarget{}{} The condition in prop. \ref{FlatnessCondition} is satisfied for \begin{itemize}% \item $E = H \mathbb{F}_p$ an [[Eilenberg-MacLane spectrum]] with $mod\;p$ [[coefficients]]; \item $E = B P$ the [[Brown-Peterson spectrum]]; \item $E = MU$ the [[complex cobordism cohomology theory|complec cobordism spectrum]]. \end{itemize} It is NOT satisfied for \begin{itemize}% \item $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]] for [[integer|integers]] [[coefficients]]; \item $E = M S U$. \end{itemize} \end{example} \begin{remark} \label{ExtGroupsByMooreComplex}\hypertarget{ExtGroupsByMooreComplex}{} Under good conditions (\ldots{}), $\pi_\bullet$ of the canonical [[cosimplicial object]] provides a [[resolution]] of [[comodule]] [[tensor product]] and hence computes the [[Ext]]-groups over the [[commutative Hopf algebroid]]: \begin{displaymath} H^p(\pi_q(Tot(cosk_\bullet(E^{\wedge^{\bullet+1}_S } \wedge_S X)))) \simeq Ext^p_{E_\bullet(E)}(\Sigma^q E_\bullet, E_\bullet(X)) \,. \end{displaymath} (\ldots{}) \end{remark} \begin{remark} \label{CanonicalMapFromELocalizationToTotalization}\hypertarget{CanonicalMapFromELocalizationToTotalization}{} There is a canonical map \begin{displaymath} L_E X \stackrel{}{\longrightarrow} \underset{\leftarrow}{\lim}_n (E^{\wedge^{n+1}_S}\wedge_S X) \end{displaymath} from the $E$-[[Bousfield localization of spectra]] of $X$ into the [[totalization]]. \end{remark} (\href{LurieLecture}{Lurie 10, lecture 30, prop. 1}) We consider now conditions for this morphism to be an [[equivalence]]. \begin{defn} \label{CoreOfARing}\hypertarget{CoreOfARing}{} For $R$ a [[ring]], its \emph{core} $c R$ is the [[equalizer]] in \begin{displaymath} c R \longrightarrow R \stackrel{\longrightarrow}{\longrightarrow} R \otimes R \,. \end{displaymath} \end{defn} \begin{prop} \label{SufficientConditionsForTotalizationToBeELocalization}\hypertarget{SufficientConditionsForTotalizationToBeELocalization}{} Let $E$ be a [[connective spectrum|connective]] [[E-∞ ring]] such that the core or $\pi_0(E)$, def. \ref{CoreOfARing} is either of \begin{itemize}% \item the [[localization of a ring|localization]] of the [[integers]] at a set $J$ of [[primes]], $c \pi_0(E) \simeq \matbb{Z}[J^{-1}]$; \item $\mathbb{Z}_n$ for $n \geq 2$. \end{itemize} Then the map in remark \ref{CanonicalMapFromELocalizationToTotalization} is an equivalence \begin{displaymath} L_E X \stackrel{\simeq}{\longrightarrow} \underset{\leftarrow}{\lim}_n (E^{\wedge^{n+1}_S}\wedge_S X) \,. \end{displaymath} \end{prop} (\href{Bousfield+localization+of+spectra#Bousfield79}{Bousfield 79}, \href{LurieLecture}{Lurie 10, lecture 30, prop. 3}, \href{LurieLecture}{Lurie 10, lecture 31,}). \hypertarget{references}{}\subsection*{{References}}\label{references} The general theory is set up in section 1.2.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]}. \end{itemize} A quick exposition of that is for instance in section 1.2 of \begin{itemize}% \item [[Dylan Wilson]] \emph{Spectral Sequences from Sequences of Spectra: Towards the Spectrum of the Category of Spectra} lecture at \href{http://math.northwestern.edu/~htanaka/pretalbot2013/index.php}{2013 Pre-Talbot Seminar} (\href{http://math.northwestern.edu/~htanaka/pretalbot2013/notes/2013-03-21-Dylan-Wilson-ANSS.pdf}{pdf}) \end{itemize} The case of the derived category of an arbitrary abelian category is discussed in details in Chapter VIII of \begin{itemize}% \item P. Hilton, U. Stammbach, \emph{A Course in Homological Algebra}, Graduate Texts in Mathematics 4 \end{itemize} The traditional discussion of the [[Adams spectral sequence]] in this style originates in \begin{itemize}% \item [[Aldridge Bousfield]], \emph{The localization of spectra with respect to homology}, Topology vol 18 (1979) (\href{http://www.math.uwo.ca/~mfrankla/Bousfield_LocalnSpectraHomol.pdf}{pdf}) \end{itemize} see also at \emph{[[Bousfield localization of spectra]]}. The formulation of this in modern [[chromatic homotopy theory]] is discussed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, lecture notes (2010) \end{itemize} [[!redirects spectral sequence of a filtered object in a stable (∞,1)-category]] [[!redirects spectral sequence of a filtered object in a stable (infinity,1)-category]] [[!redirects filtered stable homotopy type]] [[!redirects filtered stable homotopy types]] [[!redirects Lurie spectral sequence]] [[!redirects Lurie spectral sequences]] [[!redirects spectral sequence of a filtered spectrum]] [[!redirects spectral sequence of a cofiltered spectrum]] [[!redirects spectral sequences of filtered spectra]] \end{document}