\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectral super-scheme} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{superalgebra_and_supergeometry}{}\paragraph*{{Super-Algebra and Super-Geometry}}\label{superalgebra_and_supergeometry} [[!include supergeometry - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SpectralSuperpoint}{Spectral superpoint}\dotfill \pageref*{SpectralSuperpoint} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{spectral super-scheme} is supposed to be the refinement of the concept of [[super-scheme]] as one passes to [[spectral geometry]] in the sense of [[derived algebraic geometry]] over [[E-infinity rings]] ([[E-infinity geometry]]). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The following is an argument for a good definition of spectral supergeometry. This was originally motivated from the observation in \hyperlink{Kapranov13}{Kapranov 13} and uses results due to \hyperlink{Rezk09}{Rezk 09} and \hyperlink{SagaveSchlichtkrull11}{Sagave-Schlichtkrull 11}. Observe that \begin{enumerate}% \item [[E-∞ geometry]] is \emph{already in itself} a [[higher geometry|higher geometric]] version of $\mathbb{Z}$-graded supergeometry (in the sense discussed at \emph{[[geometry of physics -- superalgebra]]}). At the level of [[homotopy groups]] this is the following basic fact: For $E$ a [[homotopy commutative ring spectrum]], its [[stable homotopy groups]] $\pi_\bullet(E)$ inherit the structure of a $\mathbb{Z}$-graded [[super-commutative ring]] (according to \href{geometry+of+physics+--+superalgebra#SupercommutativeSuperalgebraZGraded}{this}). See at \emph{[[Introduction to Stable homotopy theory]]} in the section \href{Introduction+to+Stable+homotopy+theory+--+1-2#HomotopyRingSpectra}{1-2 Homotopy commutative ring spectra} \href{Introduction+to+Stable+homotopy+theory+--+1-2#HomotopyGroupsOfHomotopyCommutativeRingSpectrum}{this proposition}. But more is true: the $E_\infty$-analog of the [[integers]] $\mathbb{Z}$ is the [[sphere spectrum]] $\mathbb{S}$, and every [[E-infinity ring]] $E$ is canonically $\mathbb{S}$-graded (\hyperlink{SagaveSchlichtkrull11}{Sagave-Schlichtkrull 11, theorem 1.7-18}). So [[E-∞ geometry]] in itself is already a [[categorification|categorified]]/homotopified version of [[supergeometry]], but of $\mathbb{Z}$-graded supergeometry, not of the proper $\mathbb{Z}/2$-graded supergeometry. (That grading over the [[sphere spectrum]] is closely related to [[superalgebra]] had been highlighted in \hyperlink{Kapranov13}{Kapranov 13}, but the issue of the difference between homotopified $\mathbb{Z}$-grading compared to homotopified $\mathbb{Z}/2$-grading had been left open.) \item But ordinary $\mathbb{Z}/2$-graded [[supercommutative superalgebra]] is equivalently $\mathbb{Z}$-graded [[supercommutative superalgebra]] over the free even periodic $\mathbb{Z}$-graded supercommutative superalgebra (\href{geometry+of+physics+--+superalgebra#ModulesOverRbeta}{this prop.}). \item In view of the first point, the second point has an evident analog in [[E-∞ geometry]]: The higher/derived analog of an even periodic $\mathbb{Z}$-graded commutative algebra is an [[E-infinity algebra]] over an [[even cohomology theory|even]] [[periodic ring spectrum]]. That [[E-infinity algebras]] over [[even cohomology theory|even]] [[periodic ring spectra]] are usefully regarded from the point of view of [[supercommutative superalgebra]] was highlighted in \hyperlink{Rezk09}{Rezk 09, section 2}. \end{enumerate} Hence it makes sense to say: \textbf{Definition.} \emph{Spectral/$E_\infty$ super-geometry} is simply the [[E-∞ geometry]] over [[even cohomology theory|even]] [[periodic ring spectra]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{SpectralSuperpoint}{}\subsubsection*{{Spectral superpoint}}\label{SpectralSuperpoint} The ordinary [[superpoint]] over some [[field]] $k$ is the [[spectrum of a commutative ring]] of the graded [[symmetric algebra]] on a single odd generator (``graded [[ring of dual numbers]]'') \begin{displaymath} \mathbb{A}_k^{0 \vert 1} \;\simeq\; Spec( \,Sym_k (k[1])\, ) \end{displaymath} Accordingly, for $R$ an [[even cohomology theory|even]] [[periodic ring spectrum]], then the \emph{spectral superpoint} $R^{0 \vert 1}$ should be the [[spectral scheme]] given by the [[spectral symmetric algebra]] on the [[suspension spectrum]] of $R$: \begin{displaymath} \begin{aligned} R^{0 \vert 1} &\coloneqq Spec \left( Sym_R (\Sigma R) \right) \\ & \simeq Spec\left( R \wedge \left( \underset{n \in \mathbb{N}}{\coprod} B \Sigma(n)^{\tau_n} \right)_+ \right) \\ & \simeq Spec\left( R \wedge Sym_{\mathbb{S}}(\Sigma \mathbb{S}) \right) \end{aligned} \,. \end{displaymath} where on the right we have the [[Thom space]] of the [[vector bundle]] $\tau_n$ [[associated bundle|associated]] to the $\Sigma(n)$-[[universal principal bundle]] via the canonical [[action]] of $\Sigma(n)$ on $\mathbb{R}^n$ (see also at \href{permutation#ClassifyingSpaceAndThomSpace}{symmetric group -- Classifying space and Thom space}). \hypertarget{references}{}\subsection*{{References}}\label{references} The proposal for spectral super-geometry \hyperlink{Definition}{above} invokes observations from \begin{itemize}% \item [[Charles Rezk]], section 2 of \emph{The congruence criterion for power operations in Morava E-theory}, Homology, Homotopy and Applications, Vol. 11 (2009), No. 2, pp.327-379 (\href{https://arxiv.org/abs/0902.2499}{arXiv:0902.2499}) \item [[Steffen Sagave]], [[Christian Schlichtkrull]], \emph{Diagram spaces and symmetric spectra}, Advances in Mathematics, Volume 231, Issues 3--4, October--November 2012, Pages 2116--2193 (\href{https://arxiv.org/abs/1103.2764}{arXiv:1103.2764}) \end{itemize} The proposal \hyperlink{Definition}{above} was originally motivated from the discussion of the [[sphere spectrum]] in relation to [[super algebra]] highlighted in \begin{itemize}% \item [[Mikhail Kapranov]], \emph{Categorification of supersymmetry and stable homotopy groups of spheres}, talk at \emph{\href{http://mathserver.neu.edu/~bwebster/ACRT/}{Algebra, Combinatorics and Representation Theory: in memory of Andrei Zelevinsky (1953-2013)}} April 2013 (\href{http://mathserver.neu.edu/~bwebster/ACRT/calendar-with-abstracts.pdf}{abstract pdf}, \href{https://youtu.be/StbRti1fV7A}{video}) \item [[Mikhail Kapranov]], \emph{Supergeometry in mathematics and physics}, in [[Gabriel Catren]], [[Mathieu Anel]], (eds.) \emph{[[New Spaces for Mathematics and Physics]]} (\href{http://arxiv.org/abs/1512.07042}{arXiv:1512.07042}) \item [[Mikhail Kapranov]], \emph{Super-geometry}, talk at \emph{\href{http://ercpqg-espace.sciencesconf.org/program}{New Spaces for Mathematics \& Physics}}, IHP Paris, Oct-Sept 2015 (\href{https://www.youtube.com/watch?v=bjsNwKYT8JE}{video recording}) \end{itemize} [[!redirects spectral super-schemes]] [[!redirects spectral supergeometry]] [[!redirects E-∞ supergeometry]] [[!redirects E-infinity supergeometry]] [[!redirects spectral super scheme]] [[!redirects spectral super schemes]] [[!redirects spectral superpoint]] [[!redirects spectral superpoints]] [[!redirects spectral super point]] [[!redirects spectral super points]] [[!redirects spectral super-point]] [[!redirects spectral super-points]] [[!redirects spectral superscheme]] [[!redirects spectral superschemes]] \end{document}