\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectral symmetric algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{spectral_affine_lines}{Spectral affine lines}\dotfill \pageref*{spectral_affine_lines} \linebreak \noindent\hyperlink{spectral_superpoints}{Spectral superpoints}\dotfill \pageref*{spectral_superpoints} \linebreak \noindent\hyperlink{free_algebras}{Free $\mathbb{E}_\infty$-algebras}\dotfill \pageref*{free_algebras} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[ring spectrum]] $R$ and [[module spectrum]] $E$ over $R$, there is the [[free construction|free]] $R$-[[algebra spectrum]] induced by $E$, this is the \emph{symmetric algebra} spectrum $Sym_R E$, in direct analogy to the construction of [[symmetric algebras]] on [[vector spaces]] (e.g. \hyperlink{Khan16}{Khan 16}). The underlying spectrum of the symmetric algebra is simply the [[direct sum]] ([[wedge sum]] of spectra) of all the $n$-fold [[smash products]] of $E$ over $R$ [[homotopy quotient|homotopy quotiented]] by the canonical [[∞-action]] of the [[symmetric group]] $\Sigma(n)$ (by [[permutation]] of factors): \begin{displaymath} Sym_R E \;\coloneqq\; \underset{n \in \mathbb{N}}{\vee} (E^{\wedge^n})/\Sigma(n) \,. \end{displaymath} In contrast to ordinary [[symmetric algebras]] on ordinary [[modules]] over ordinary [[rings]], this means that the symmetric algebra on $R$ itself, regarded as a [[module spectrum]] itself has interesting structure: \begin{displaymath} \begin{aligned} Sym_R R & \simeq \underset{n \in \mathbb{N}}{\vee} R / \Sigma(n) \\ & \simeq \underset{n \in \mathbb{N}}{\vee} R \wedge (B \Sigma(n))_+ \\ & \simeq R \wedge \left( \underset{n \in \mathbb{N}}{\coprod} B \Sigma(n) \right)_+ \end{aligned} \,, \end{displaymath} where $B \Sigma_n$ denotes the [[homotopy type]] of the [[classifying space]] of the [[symmetric group]] on $n$ elements (given for instance by the [[topological space]] $Emb(\{1, \cdots, n\}, \mathbb{R}^{\infty})/\Sigma(n)$). In particular for $R = \mathbb{S}$ the [[sphere spectrum]], then the \emph{absolute [[spectral affine line]]} $Sym_{\mathbb{S}}\mathbb{S}$ is nontrivial. This, and its structure of a [[Hopf ring spectrum]], is discussed in \hyperlink{StricklandTurner97}{Strickland-Turner 97}. More generally, \begin{displaymath} R\{x_1, \cdots, x_n\} \coloneqq Sym_R (R^{\vee^n}) \end{displaymath} is like a [[polynomial ring|polynomial]] [[algebra spectrum]] over $R$. Beware that there is a similar construction that is in general different, namely \begin{displaymath} R[x_1, \cdots, x_n] \coloneqq R \wedge \Sigma^\infty(\mathbb{N}_+) \end{displaymath} where on the right we have the ``monoid $\infty$-algebra'' of the [[natural numbers]], directly analogous to the [[∞-group ∞-ring]] construction. There is a canonical comparison homomorphisms \begin{displaymath} R\{x_1, \cdots, x_n\} \longrightarrow R[x_1, \cdots, x_n] \,. \end{displaymath} This is an [[equivalence]] if $R$ is of [[characteristic zero]] (\hyperlink{Khan16}{Khan 16, prop. 2.7.4}). Similarly, if $E = \Sigma^n R \simeq R \wedge S^n$ is the $n$-fold [[suspension]] of $R$, regarded as an $R$-[[module spectrum]], then \begin{displaymath} \begin{aligned} Sym_R(\Sigma^n R) & \simeq R \wedge \left( \underset{k \in \mathbb{N}}{\coprod} S^{n k}/\Sigma(k) \right)_+ \\ & \simeq R \wedge \left( \underset{k \in \mathbb{N}}{\coprod} (B \Sigma(k))^{n \tau_k} \right) \end{aligned} \,, \end{displaymath} where on the right we have the [[Thom space]] of the [[vector bundle]] $\tau_n$ [[associated bundle|associated]] to the $\Sigma(n)$-[[universal principal bundle]] via the canonical [[action]] of $\Sigma(n)$ on $\mathbb{R}^n$ (see also at \href{permutation#ClassifyingSpaceAndThomSpace}{symmetric group -- Classifying space and Thom space}). The operation $Sym_R$ is of course functorial, and hence any choice of $R$-linear map $f_x \colon R \to E$ induces morphisms \begin{displaymath} R \wedge B \Sigma(n)_+ \simeq Sym^n_R(R) \longrightarrow Sym_R^n(E) \,. \end{displaymath} These correspond to [[power operation]] in [[generalized (Eilenberg-Steenrod) cohomology]] (\hyperlink{Rezk10}{Rezk 10, slide 4}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{spectral_affine_lines}{}\subsubsection*{{Spectral affine lines}}\label{spectral_affine_lines} For $R$ a ([[connective spectrum|connective]]) [[E-∞ ring]], the \begin{displaymath} \mathbb{A}^1_R \coloneqq Spec( Sym_R(R) ) \end{displaymath} is the [[spectral affine line]] over $R$. \hypertarget{spectral_superpoints}{}\subsubsection*{{Spectral superpoints}}\label{spectral_superpoints} By the discussion at \emph{[[spectral super scheme]]}, it makes good sense to regard the concept of a [[spectral scheme]] over an [[even cohomology theory|even]] [[periodic ring spectrum]] $R$ as the lift to [[spectral geometry]] of the concept of ordinary [[super schemes]]. Under this identification the ordinary [[superpoint]], which is the [[spectrum of a commutative ring]] of the graded symmetric algebra on a single odd generator (``[[ring of dual numbers]]'') \begin{displaymath} \mathbb{A}_k^{0 \vert 1} \;\simeq\; Spec( Sym_k (k[1]) ) \end{displaymath} is given by the corresponding [[spectral scheme]] given by the spectral symmetric algebra on the [[suspension spectrum]] of $R$: \begin{displaymath} \begin{aligned} R^{0 \vert 1} &\coloneqq Spec \left( Sym_R (\Sigma R) \right) \\ & \simeq Spec\left( R \wedge Sym_{\mathbb{S}}(\Sigma \mathbb{S}) \right) \end{aligned} \end{displaymath} \hypertarget{free_algebras}{}\subsubsection*{{Free $\mathbb{E}_\infty$-algebras}}\label{free_algebras} The free $\mathbb{E}_\infty$-algebra over $R$ on $n$ generators is the spectrum $Sym_R(R^{\vee n})$. This is typically denoted $R\{x_1, \ldots, x_n\}$. If $R$ is connective, $\pi_0(R\{x_1, \ldots, x_n\})$ can be identified with the polynomial algebra $(\pi_0 R)[x_1, \ldots, x_n]$. The spectrum $R\{x_1, \ldots, x_n\}$ satisfies the following universal property: for any other $\mathbb{E}_\infty$-$R$-algebra $T$, \begin{displaymath} Map_{Alg_R^{\mathbb{E}_\infty}}(R\{x_1, \ldots, x_n\}, T) \simeq (\Omega^\infty T)^{\times n}. \end{displaymath} See (\hyperlink{Lurie18}{Lurie 2018, Notation B.1.1.2}) \hypertarget{references}{}\subsection*{{References}}\label{references} The symmetric algebra spectrum of the [[sphere spectrum]], and its structure as a [[Hopf ring spectrum]] is discussed in \begin{itemize}% \item [[Neil Strickland]], [[Paul Turner]], \emph{Rational Morava $E$-theory and $D S^0$}, Topology Volume 36, Issue 1, January 1997, Pages 137-151 (\href{http://hopf.math.purdue.edu/Strickland-PTurner/rme.pdf}{pdf}) \end{itemize} Symmetric algebras in the context of [[power operation]] on [[generalized (Eilenberg-Steenrod) cohomology]] are discussed in \begin{itemize}% \item [[Charles Rezk]], \emph{Power operations in Morava E-theory -- a survey} (2009) (\href{http://www.math.uiuc.edu/~rezk/midwest-2009-power-ops.pdf}{pdf}) \item [[Charles Rezk]] \emph{Power operations in Morava $E$-Theory} (2010) (\href{http://www.math.uiuc.edu/~rezk/baltimore-2010-power-ops-handout.pdf}{pdf}) \item [[Charles Rezk]], \emph{Isogenies, power operations, and homotopy theory}, article (\href{http://www.math.uiuc.edu/~rezk/rezk-icm-talk-posted.pdf}{pdf}) and talk at ICM 2014 (\href{http://www.math.uiuc.edu/~rezk/rezk-icm-2014-slides.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Jacob Lurie]], examples 3.5.4 in \emph{Elliptic Cohomology I} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf}{pdf}) \item [[Jacob Lurie]], notation B.1.1.2 in \emph{Spectral Algebraic Geometry} (\href{http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf}{pdf}) \item [[Adeel Khan]], sections 2.6 and 2.7 of \emph{Brave new motivic homotopy theory I} (\href{https://arxiv.org/abs/1610.06871}{arXiv:1610.06871}) \end{itemize} [[!redirects spectral symmetric algebra]] [[!redirects symmetric algebra spectra]] [[!redirects symmetric algebra spectrum]] [[!redirects spectral polynomial algebra]] [[!redirects spectral polynomial algebras]] [[!redirects spectral polynomial ring]] [[!redirects spectral polynomial rings]] \end{document}