\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectrification} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{existence}{Existence}\dotfill \pageref*{existence} \linebreak \noindent\hyperlink{for_sequential_spectra}{For sequential spectra}\dotfill \pageref*{for_sequential_spectra} \linebreak \noindent\hyperlink{for_excisive_functors}{For excisive functors}\dotfill \pageref*{for_excisive_functors} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{for_sequential_spectra_2}{For sequential spectra}\dotfill \pageref*{for_sequential_spectra_2} \linebreak \noindent\hyperlink{for_coordinatefree_spectra}{For coordinate-free spectra}\dotfill \pageref*{for_coordinatefree_spectra} \linebreak \noindent\hyperlink{for_symmetric_spectra}{For symmetric spectra}\dotfill \pageref*{for_symmetric_spectra} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[full subcategory|inclusion]] of actual [[spectra]] (e.g. [[sequential spectrum|sequential]] [[Omega-spectra]] or [[excisive functors]] on $(\infty Grpd_{fin}^{\ast/})^{op}$) into [[pre-spectra]] (e.g. [[sequential spectrum|sequential]] pre-spectra or all functors on on $(\infty Grpd_{fin}^{\ast/})^{op}$) has a ([[adjoint (infinity,1)-functor|infinity]]-)[[left adjoint]], ``spectrification''. \hypertarget{existence}{}\subsection*{{Existence}}\label{existence} \hypertarget{for_sequential_spectra}{}\subsubsection*{{For sequential spectra}}\label{for_sequential_spectra} An original account is (\hyperlink{Lewis86}{Lewis 86}). The following is the approach due to (\hyperlink{Joyal08}{Joyal 08}), in the generality of [[parameterized spectra]] (which happens to make the analysis easier instead of harder). \begin{defn} \label{}\hypertarget{}{} Let $seq$ be the [[diagram]] category as follows: \begin{displaymath} seq \coloneqq \left\{ \itexarray{ && \vdots && \vdots \\ && \downarrow && \\ \cdots &\to& x_{n-1} &\stackrel{p_{n-1}}{\longrightarrow}& \ast \\ &&{}^{\mathllap{p_{n-1}}}\downarrow &\swArrow& \downarrow^{\mathrlap{i_n}} & \searrow^{\mathrm{id}} \\ &&\ast &\underset{i_n}{\longrightarrow}& x_n &\stackrel{p_n}{\longrightarrow}& \ast \\ && &{}_{\mathllap{id}}\searrow& {}^{\mathllap{p_n}}\downarrow &\swArrow& \downarrow^{\mathrlap{i_{n+1}}} \\ && && \ast &\stackrel{i_{n+1}}{\longrightarrow}& x_{n+1} &\to& \cdots \\ && && && \downarrow \\ && && && \vdots } \right\}_{n \in \mathbb{N}} \,. \end{displaymath} \end{defn} (\hyperlink{Joyal08}{Joyal 08, section 35.5}) Let $\mathbf{H}$ be an [[(∞,1)-topos]], for instance $\mathbf{H} =$ [[∞Grpd]] for purposes of traditional [[stable homotopy theory]]. \begin{remark} \label{}\hypertarget{}{} An [[(∞,1)-functor]] \begin{displaymath} X_\bullet \;\colon\; seq \longrightarrow \mathbf{H} \end{displaymath} is equivalently \begin{enumerate}% \item a choice of [[object]] $B \in \mathbf{H}$ (the image of $\ast \in seq$); \item a sequence of objects $\{X_n\} \in \mathbf{H}_{/B}$ in the [[slice (∞,1)-topos]] over $B$; \item a sequence of [[morphisms]] $X_n \longrightarrow \Omega_B X_{n+1}$ from $X_n$ into the [[loop space object]] of $X_{n+1}$ in the slice. \end{enumerate} This is a [[prespectrum object]] in the [[slice (∞,1)-topos]] $\mathbf{H}_{/B}$. A [[natural transformation]] $f \;\colon \;X_\bullet \to Y_\bullet$ between two such functors with components \begin{displaymath} \left\{ \itexarray{ X_n &\stackrel{f_n}{\longrightarrow}& Y_n \\ \downarrow^{\mathrlap{p_n^X}} && \downarrow^{\mathrlap{p_n^Y}} \\ B_1 &\stackrel{f_b}{\longrightarrow}& B_2 } \right\} \end{displaymath} is equivalently a morphism of base objects $f_b \;\colon\; B_1 \longrightarrow B_2$ in $\mathbf{H}$ together with morphisms $X_n \longrightarrow f_b^\ast Y_n$ into the [[(∞,1)-pullback]] of the components of $Y_\bullet$ along $f_b$. Therefore the [[(∞,1)-presheaf (∞,1)-topos]] \begin{displaymath} \mathbf{H}^{seq} \coloneqq Func(seq, \mathbf{H}) \end{displaymath} is the [[codomain fibration]] of $\mathbf{H}$ with ``fiberwise pre-stabilization''. A genuine [[spectrum object]] is a [[prespectrum object]] for which all the structure maps $X_n \stackrel{\simeq}{\longrightarrow} \Omega_B X_{n+1}$ are [[equivalence in an (∞,1)-category|equivalences]]. The [[full sub-(∞,1)-category]] \begin{displaymath} T \mathbf{H} \hookrightarrow \mathbf{H}^{seq} \end{displaymath} on the genuine [[spectrum objects]] is therefore the ``fiberwise [[stabilization]]'' of the self-indexing, hence the tangent $(\infty,1)$-category. \end{remark} \begin{lemma} \label{SpectrificationLemma}\hypertarget{SpectrificationLemma}{} \textbf{(spectrification is left exact reflective)} The inclusion of [[spectrum objects]] into $\mathbf{H}^{seq}$ is [[left exact (infinity,1)-functor|left]] [[reflective sub-(infinity,1)-category|reflective]], hence it has a [[left adjoint]] [[(∞,1)-functor]] $L$ -- [[spectrification]] -- which preserves [[finite (∞,1)-limits]]. \begin{displaymath} T \mathbf{H} \stackrel{\overset{L_{lex}}{\leftarrow}}{\hookrightarrow} \mathbf{H}^{seq} \,. \end{displaymath} \end{lemma} (\hyperlink{Joyal08}{Joyal 08, section 35.1}) \begin{proof} Forming degreewise [[loop space objects]] constitutes an [[(∞,1)-functor]] $\Omega \colon \mathbf{H}^{seq} \longrightarrow \mathbf{H}^{seq}$ and by definition of $seq$ this comes with a [[natural transformation]] out of the identity \begin{displaymath} \theta \;\colon\; id \longrightarrow \Omega \,. \end{displaymath} This in turn is compatible with $\Omega$ in that \begin{displaymath} \theta \circ \Omega \simeq \Omega \circ \theta \;\colon\; \rho \longrightarrow \rho \circ \rho = \rho^2 \,. \end{displaymath} Consider then a sufficiently deep [[transfinite composition]] $\rho^{tf}$. By the [[small object argument]] available in the [[presentable (∞,1)-category]] $\mathbf{H}$ this stabilizes, and hence provides a [[reflective sub-(infinity,1)-category|reflection]] $L \;\colon\; \mathbf{H}^{seq} \longrightarrow T \mathbf{H}$. Since [[transfinite composition]] is a [[filtered (∞,1)-colimit]] and since in an [[(∞,1)-topos]] these commute with [[finite (∞,1)-limits]], it follows that spectrum objects are an [[exact (∞,1)-functor|left exact]] [[reflective sub-(∞,1)-category]]. \end{proof} See also at \emph{[[tangent (∞,1)-topos]]}. \hypertarget{for_excisive_functors}{}\subsubsection*{{For excisive functors}}\label{for_excisive_functors} See at \emph{\href{n-excisive+functor#nExcisiveApproximation}{n-excisive functor -- n-Excisive approximation and reflection}} \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} \hypertarget{for_sequential_spectra_2}{}\subsubsection*{{For sequential spectra}}\label{for_sequential_spectra_2} For $E$ a [[sequential spectrum|sequential]] [[CW-spectrum|CW-]][[pre-spectrum]], its spectrification to an [[Omega-spectrum]] may be constructed \begin{displaymath} (L E)_n = \underset{\longrightarrow}{\lim}_k \Omega^k E_{n+k} \,. \end{displaymath} (\hyperlink{LewisMaySteinberger86}{Lewis-May-Steinberger 86, p. 3}, \hyperlink{Weibel94}{Weibel 94, 10.9.6 and topology exercise 10.9.2}) In the special case that $E = \Sigma^\infty X$ a [[suspension spectrum]], i.e. with $E_n = \Sigma^n X$, then $(L E)_0$ is the [[free infinite loop space]] construction. If the pre-spectrum $E$ is not a [[CW-spectrum]] then the construction of the spectrification is more involved (\hyperlink{Lewis86}{Lewis 86}). For $E$ a [[sequential spectrum|sequential]] [[prespectrum]] in [[pointed object|pointed]] [[simplicial sets]] the spectrification may be constructed by (\hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78, section 2.3}) \begin{displaymath} (L E)_n = \underset{\longrightarrow}{\lim}_k Sing {\Omega^k {\vert E_{n+k} \vert}} \end{displaymath} (i.e. by the previous formula combined with [[geometric realization]]/[[Kan fibrant replacement]]). Generally, for sequential spectra in any [[proper model category|proper]] [[pointed category|pointed]] [[simplicial model category]] which admits a [[small object argument]], spectrification is discussed in (\hyperlink{Schwede97}{Schwede 97, section 2.1}). These spectrification functors on sequential prespectra satisfy the conditions of the [[Bousfield-Friedlander theorem]], and hence the [[left Bousfield localization]] of pre-spectra with degree-wise fibrations weak equivalences at the morphisms of prespectra that become weak equivalences under spectrification exists. This is the stable \emph{[[Bousfield-Friedlander model structure]]}. \hypertarget{for_coordinatefree_spectra}{}\subsubsection*{{For coordinate-free spectra}}\label{for_coordinatefree_spectra} Similarly for a [[coordinate-free spectrum]] $E$, if all the structure maps are inclusions \begin{displaymath} E_V \hookrightarrow \Omega^{W-V}E_W \end{displaymath} then the spectrification is \begin{displaymath} (L E)_V = \underset{V\subset W}{\lim} \Omega^{W-V}E_V \,- \end{displaymath} (\hyperlink{ElmendorfKrizMay95}{Elmendorf-Kriz-May 95, p. 7}) \hypertarget{for_symmetric_spectra}{}\subsubsection*{{For symmetric spectra}}\label{for_symmetric_spectra} For [[symmetric spectra]], see (\hyperlink{Schwede12}{Schwede 12, prop. 4.39}). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Aldridge Bousfield]], [[Eric Friedlander]], \emph{Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets}, Springer Lecture Notes in Math., Vol. 658, Springer, Berlin, 1978, pp. 80-130. (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/bousfield-friedlander.pdf}{pdf}) \item [[L. Gaunce Lewis]], [[Peter May]], M. Steinberger, \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics, 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \item [[L. Gaunce Lewis]], \emph{Analysis of the passage from prespectra to spectra}, appendix in [[L. Gaunce Lewis]], [[Peter May]], M. Steinberger, \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics, 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \item [[Charles Weibel]], \emph{[[An introduction to homological algebra]]}, Cambridge Studies in Adv. Math. 38, CUP 1994 \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Peter May]], \emph{[[Modern foundations for stable homotopy theory]]}, in [[Ioan Mackenzie James]] (ed.), \emph{[[Handbook of Algebraic Topology]]}, Amsterdam: North-Holland, 1995 pp. 213--253, (\href{http://hopf.math.purdue.edu/Elmendorf-Kriz-May/modern_foundations.pdf}{pdf}) \item [[Stefan Schwede]], \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997) 77-104 (\href{http://www.math.uni-bonn.de/people/schwede/modelspec.pdf}{pdf}) \item [[Stefan Schwede]], around prop. 4.39 of \emph{[[Symmetric spectra]]} (2012) \item [[André Joyal]], \emph{Notes on Logoi}, 2008 (\href{http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf}{pdf}) \item [[Cary Malkiewich]], \emph{Some facts about $Q X$} (\href{http://www.math.uiuc.edu/~cmalkiew/Q.pdf}{pdf}) \end{itemize} [[!redirects spectrifications]] [[!redirects Omega-spectrification]] [[!redirects Omega-spectrifications]] \end{document}