\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spectrum} This entry is about the notion of spectrum in [[stable homotopy theory]]. For other uses of the term `'spectrum'` see [[spectrum - disambiguation]]. \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{connective_and_nonconnective_spectra_infinite_loop_spaces}{Connective and non-connective spectra; infinite loop spaces}\dotfill \pageref*{connective_and_nonconnective_spectra_infinite_loop_spaces} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{SequentialPreSpectra}{Sequential pre-spectra}\dotfill \pageref*{SequentialPreSpectra} \linebreak \noindent\hyperlink{OmegaSpectrum}{$\Omega$-spectra}\dotfill \pageref*{OmegaSpectrum} \linebreak \noindent\hyperlink{coordinatefree_spectra}{Coordinate-free spectra}\dotfill \pageref*{coordinatefree_spectra} \linebreak \noindent\hyperlink{combinatorial_spectra}{Combinatorial spectra}\dotfill \pageref*{combinatorial_spectra} \linebreak \noindent\hyperlink{general_context}{General context}\dotfill \pageref*{general_context} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{stabilization}{Stabilization}\dotfill \pageref*{stabilization} \linebreak \noindent\hyperlink{symmetric_monoidal_structure}{Symmetric monoidal structure}\dotfill \pageref*{symmetric_monoidal_structure} \linebreak \noindent\hyperlink{closed_structure}{Closed structure}\dotfill \pageref*{closed_structure} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{relation_to_symmetric_monoidal_groupoids}{Relation to symmetric monoidal ∞-groupoids}\dotfill \pageref*{relation_to_symmetric_monoidal_groupoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[topological space|topological]] spectrum is an [[object]] in the universal [[stable (∞,1)-category]] $Sp(Top) \simeq Sp(\infty Grpd)$ that stabilizes the [[(∞,1)-category]] [[Top]] or $\simeq$ [[∞-Grpd]] of [[topological spaces]] or [[∞-groupoids]] under the operations of forming [[loop space objects]] and [[reduced suspensions]]: the [[stable (∞,1)-category of spectra]]. More generally, one may consider [[spectrum objects]] in any [[presentable (∞,1)-category]]. \hypertarget{connective_and_nonconnective_spectra_infinite_loop_spaces}{}\subsubsection*{{Connective and non-connective spectra; infinite loop spaces}}\label{connective_and_nonconnective_spectra_infinite_loop_spaces} As opposed to the [[homotopy groups]] of a [[topological space]], the [[homotopy groups of a spectrum]] are defined and may be non-trivial in \emph{negative} integer degree. This follows from the fact that the [[loop space]] operation is by construction invertible on spectra, which implies that for every spectrum $E$ these and all $n$, the $n$-fold looping $\Omega^n$ has [[stable homotopy groups]] given by $\pi_{k-n}(\Omega^n E) \simeq \pi_k(E)$. Those spectra for which the [[homotopy groups of spectra]] in negative degree happen to vanish are called \emph{[[connective spectra]]}. They are equivalent to [[infinite loop spaces]], i.e. grouplike [[E-∞ spaces]]. Connective spectra in the image of the [[nerve]] operation of the classical [[Dold-Kan correspondence]]: this identifies [[∞-groupoids]] that are not only connective spectra but even have a \emph{strict} symmetric monoidal [[group]] structure with non-negatively graded [[chain complex]]es of abelian groups. \begin{displaymath} \itexarray{ Ch_+ &\stackrel{Dold-Kan \; nerve}{\to}& ConnectSp(\infty Grp) \subset \infty Grpd \\ (\cdots A_2 \stackrel{\partial}{\to} A_1 \stackrel{\partial}{\to} A_0 \to 0 \to 0 \to \cdots) &\stackrel{}{\mapsto}& N(A_\bullet) } \end{displaymath} The [[homology]] groups of the chain complex correspond precisely to the [[homotopy groups]] of the corresponding [[topological space]] or [[∞-groupoid]]. The free stabilization of the [[(∞,1)-category]] of non-negatively graded chain complexes is simpy the [[stable (∞,1)-category]] of arbitrary chain complexes. There is a [[stable Dold-Kan correspondence]] (see at \emph{[[module spectrum]]} the section \emph{\href{module+spectrum#StableDoldKanCorrespondence}{stable Dold-Kan correspondence}} ) that identifies these with special objects in $Sp(Top)$. \begin{displaymath} \itexarray{ Ch &\stackrel{Dold-Kan \; nerve}{\to}& Sp(\infty Grp) \\ (\cdots A_2 \stackrel{\partial}{\to} A_1 \stackrel{\partial}{\to} A_0 \stackrel{\partial}{\to} A_{-1} \stackrel{\partial}{\to} A_{-2} \to \cdots) &\stackrel{}{\mapsto}& N(A_\bullet) } \end{displaymath} So it is the homologically nontrivial parts of the chain complexes in negative degree that corresponds to the non-connectiveness of a spectrum. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are many ``models'' for spectra, all of which present the same ([[stable homotopy theory|stable]]) [[homotopy theory]] (and in fact, nearly all of them are [[Quillen equivalence|Quillen equivalent]] [[model category|model categories]]). For more details see at \emph{[[Introduction to Stable Homotopy Theory]]}. \hypertarget{SequentialPreSpectra}{}\subsubsection*{{Sequential pre-spectra}}\label{SequentialPreSpectra} A simple first definition is to define a spectrum $\mathbf{E}$ to be a sequence of pointed spaces $(E_n)_{n\in\mathbb{N}}$ together with structure maps $\Sigma{}E_n\to{}E_{n+1}$ (where $\Sigma$ denotes the [[reduced suspension]]). See at \emph{[[model structure on sequential spectra]]}. There are various conditions that can be put on the spaces $E_n$ and the structure maps, for example if the spaces are CW-complexes and the structure maps are inclusions of subcomplexes, the spectrum is called a \textbf{[[CW-spectrum]]}. Without any condition, this is just called a \textbf{spectrum}, or sometimes a \textbf{pre-spectrum}. In order to distinguish from various other richer definitions (such as [[coordinate-free spectra]], one also speaks of \emph{[[sequential spectra]]}). For details see \emph{[[Introduction to Stable homotopy theory -- 1-1|Introduction to stable homotopy theory -- 1.1 Sequential Spectra]]}. \hypertarget{OmegaSpectrum}{}\subsubsection*{{$\Omega$-spectra}}\label{OmegaSpectrum} If $\Omega$ denotes the [[loop space]] functor on the category of pointed spaces, we know that $\Sigma$ is left adjoint to $\Omega$. In particular, given a spectrum $\mathbf{E}$, the structure maps can be transformed into maps $E_n\to\Omega{}E_{n+1}$. If these maps are isomorphisms (depending on the situation it can be weak equivalences or homeomorphisms), then $\mathbf{E}$ is called an \textbf{$\Omega$-spectrum}. The idea is that $E_0$ contains the information of $\mathbf{E}$ in dimensions $k\ge 0$, $E_1$ contains the information of $\mathbf{E}$ in $k\ge -1$ (but shifted up by one, so that it is modeled by the $\ge 0$ information in the space $E_1$), and so on. $\Omega$-spectra are special cases of [[sequential spectrum|sequential]] pre-spectra as \hyperlink{SequentialPreSpectra}{above}, and are in fact the [[fibrant objects]] for some [[model structure on spectra]]. Given any sequential pre-spectrum $\mathbf{E}$, it induces an equivalent $\Omega$-spectrum $\mathbf{F}$ (a fibrant replacement of $\mathbf{E}$, its \emph{[[spectrification]]}) given by (\hyperlink{LewisMaySteinberger86}{Lewis-May-Steinberger 86, p. 3}) \begin{displaymath} F_n \coloneqq \lim_{m\to\infty}\Omega^m E_{n+m} \end{displaymath} (using that $\Omega$ commutes with the [[filtered colimits]]). \hypertarget{coordinatefree_spectra}{}\subsubsection*{{Coordinate-free spectra}}\label{coordinatefree_spectra} A definition of spectrum consisting of spaces indexed by index sets less ``coordinatized'' than the integers is a \begin{itemize}% \item [[coordinate-free spectrum]]. \end{itemize} See there for details. \hypertarget{combinatorial_spectra}{}\subsubsection*{{Combinatorial spectra}}\label{combinatorial_spectra} There might be a type of categorical structure related to a spectrum in the same way that $\infty$-categories are related to $\infty$-groupoids. In other words, it would contain $k$-cells for all integers $k$, not necessarily invertible. Some people have called this conjectural object a \textbf{$Z$-category}. ``Connective'' $Z$-categories could perhaps then be identified with stably monoidal $\infty$-categories. One realization of this kind of idea is the notion of [[combinatorial spectrum]]. \hypertarget{general_context}{}\subsubsection*{{General context}}\label{general_context} See [[spectrum object]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[suspension spectrum]] \item [[sphere spectrum]] \item [[Eilenberg-MacLane spectrum]] \item [[K-theory spectrum]] \item [[elliptic spectrum]] \item [[tmf]] \item [[Thom spectrum]], [[complex cobordism spectrum]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{stabilization}{}\subsubsection*{{Stabilization}}\label{stabilization} In direct analogy to how topological spaces form the archetypical example, [[Top]], of an [[(∞,1)-category]], spectra form the archetypical example $Sp(Top)$ of a [[stable (∞,1)-category]]. In fact, there is a general procedure for turning any [[pointed category|pointed]] [[(∞,1)-category]] $C$ into a stable $(\infty,1)$-category $Sp(C)$, and doing this to the category $Top_*$ of [[pointed object|pointed]] spaces yields $Sp(Top)$. \hypertarget{symmetric_monoidal_structure}{}\subsubsection*{{Symmetric monoidal structure}}\label{symmetric_monoidal_structure} \begin{itemize}% \item [[smash product of spectra]] \item [[symmetric monoidal smash product of spectra]] \end{itemize} \hypertarget{closed_structure}{}\subsubsection*{{Closed structure}}\label{closed_structure} \begin{itemize}% \item [[mapping spectrum]] \end{itemize} \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} \begin{itemize}% \item [[model structure on spectra]] \end{itemize} \hypertarget{relation_to_symmetric_monoidal_groupoids}{}\subsubsection*{{Relation to symmetric monoidal ∞-groupoids}}\label{relation_to_symmetric_monoidal_groupoids} \begin{itemize}% \item [[stable homotopy hypothesis]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homotopy group of a spectrum]] \item [[sheaf of spectra]], [[parametrized spectrum]] \begin{itemize}% \item [[smooth spectrum]] \end{itemize} \item [[spectrum with G-action]], [[G-spectrum]] \item [[ring spectrum]], [[algebra spectrum]], [[module spectrum]] \item [[zero spectrum]] \item [[finite spectrum]] \item [[p-local spectrum]] \item [[Bousfield localization of spectra]] \item [[motivic spectrum]] \item [[Brown representability theorem]] \item [[stable homotopy hypothesis]] \end{itemize} [[!include k-monoidal table]] \hypertarget{references}{}\subsection*{{References}}\label{references} According to (\hyperlink{Adams74}{Adams 74, p. 131}) the notion of spectrum is due to \begin{itemize}% \item E. L. Lima, \emph{Duality and Postnikov invariants}, Thesis, University of Chicago, Chicago 1958 \end{itemize} \begin{quote}% It is generally supposed that [[George Whitehead|G. W. Whitehead]] also had something to do with it, but the latter takes a modest attitude about that. (\hyperlink{Adams74}{Adams 74, p. 131}) \end{quote} Early notes include \begin{itemize}% \item [[Michael Boardman]], \emph{Stable homotopy theory}, mimeographed notes, University of Warwick, 1965 onward \item [[Frank Adams]], Part III, section 2 \emph{[[Stable homotopy and generalised homology]]}, 1974 \end{itemize} See the references at \emph{[[stable homotopy theory]]}. Lecture notes include \begin{itemize}% \item \emph{[[Introduction to Stable homotopy theory -- 1-1|Introduction to stable homotopy theory -- 1.1 Sequential Spectra]]} \end{itemize} More modern developments are due to \begin{itemize}% \item [[L. Gaunce Lewis]], [[Peter May]], M. Steinberger, \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics, 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \end{itemize} The quick idea is surveyed for instance in \begin{itemize}% \item [[Cary Malkiewich]], \emph{The stable homotopy category}, 2014 (\href{http://math.stanford.edu/~carym/stable.pdf}{pdf}) \item [[Aaron Mazel-Gee]], \emph{An introduction to spectra} (\href{https://math.berkeley.edu/~aaron/writing/an-introduction-to-spectra.pdf}{pdf}) \end{itemize} The first review of stable homotopy theory with [[symmetric monoidal smash product of spectra]] is (in terms of [[S-modules]]) in \begin{itemize}% \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Peter May]], \emph{[[Modern foundations for stable homotopy theory]]}, in [[Ioan Mackenzie James]], \emph{[[Handbook of Algebraic Topology]]}, Amsterdam: North-Holland, (1995) pp. 213--253, (\href{http://hopf.math.purdue.edu/Elmendorf-Kriz-May/modern_foundations.pdf}{pdf}) \end{itemize} A comprehensive account of the symmetric model in terms of [[symmetric spectra]] is in \begin{itemize}% \item [[Stefan Schwede]], \emph{Symmetric spectra} (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} and in terms of [[orthogonal spectra]] in \begin{itemize}% \item [[Stefan Schwede]], \emph{[[Global homotopy theory]]} (take $\mathcal{F} = \{1\}$, on p. 4, to be the trivial collection of groups, in order to specialize from [[global equivariant stable homotopy theory]] to plain stable homotopy theory). \end{itemize} See also \begin{itemize}% \item [[Robert Thomason]], \emph{Symmetric Monoidal Categories Model All Connective Spectra} (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8193}{web}) \item [[Frank Adams]], \emph{Infinite loop spaces}, Princeton University Press, 1978 \item [[Joseph Ayoub]], \emph{Les six op\'e{}rations de Grothendieck et le formalisme des cycles \'e{}vanescents dans le monde motivique, I}. Ast\'e{}risque, Vol. 314 (2008). Soci\'e{}t\'e{} Math\'e{}matique de France. (\href{http://user.math.uzh.ch/ayoub/PDF-Files/THESE.PDF}{pdf}) \end{itemize} [[!redirects spectra]] [[!redirects prespectrum]] [[!redirects prespectra]] [[!redirects pre-spectrum]] [[!redirects pre-spectra]] \end{document}