\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spherical fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{classifying_space}{Classifying space}\dotfill \pageref*{classifying_space} \linebreak \noindent\hyperlink{as_module_bundles}{As $(\infty,1)$-module bundles}\dotfill \pageref*{as_module_bundles} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{adams_conjecture}{Adams conjecture}\dotfill \pageref*{adams_conjecture} \linebreak \noindent\hyperlink{gysin_sequence}{Gysin sequence}\dotfill \pageref*{gysin_sequence} \linebreak \noindent\hyperlink{rational_homotopy_type}{Rational homotopy type}\dotfill \pageref*{rational_homotopy_type} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_rational_homotopy_theory}{In rational homotopy theory}\dotfill \pageref*{in_rational_homotopy_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{spherical fibration} is a [[fiber bundle]] of [[spheres]] of some [[dimension]] (a [[sphere fiber bundle]]). Typically this is considered in [[homotopy theory]] where one considers [[fibrations]] whose [[fibers]] have the [[homotopy type]] of [[spheres]]; and this in turn is often considered in [[stable homotopy theory]] after [[stabilization]] (hence up to tensoring with trivial spherical fibrations) which makes spherical fibrations models for [[(∞,1)-module bundles]] for the [[sphere spectrum]] regarded as an [[E-∞ ring]]. Every [[real vector bundle]] becomes a spherical fibration in the sense of [[homotopy theory]] upon removing its [[zero section]] and this construction induces a map from vector bundles and in fact from [[topological K-theory]] to spherical fibrations, called the \emph{[[J-homomorphism]]}. This is closely related to the [[Thom space]]/[[Thom spectrum]] construction for vector bundles. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} For $X$ (the [[homotopy type]] of) a [[topological space]], a \emph{spherical fibration over it} is a [[fibration]] $E \to X$ such that each [[fiber]] has the [[homotopy type]] of a [[sphere]]. Given two spherical fibrations $E_1, E_2 \to X$, there is their fiberwise [[smash product]] $E_1 \wedge_X E_2 \to X$. For $n \in \mathbb{N}$, write $\epsilon^n \colon X \times S^n \to X$ for the trivial sphere bundle of fiber dimension $n$. Two spherical fibrations $E_1, E_2 \to X$ are \emph{stably fiberwise equivalent} if there exists $n_1, n_2 \in \mathbb{N}$ such that there is a map \begin{displaymath} E_1 \wedge_X \epsilon^{n_1} \longrightarrow E_2 \wedge_X \epsilon^{n_2} \end{displaymath} over $X$ which is fiberwise a [[weak homotopy equivalence]]. One consider the [[abelian group]] \begin{displaymath} Sph(X) \in Ab \end{displaymath} to be the [[Grothendieck group]] of stable fiberwise equivalence classes of spherical fibrations, under fiberwise smash product. \hypertarget{classifying_space}{}\subsubsection*{{Classifying space}}\label{classifying_space} There is an associative [[H-space]], $G_n$, of homotopy equivalences of the $(n-1)$-sphere with composition. Then $B G_n$ acts as the [[classifying space]] for spherical fibrations with spherical fibre $S^{n-1}$ (\hyperlink{Stasheff63}{Stasheff 63}). There is an inclusion of the [[orthogonal group]] $O(n)$ into $G_n$. Suspension gives a map $G_n \to G_{n+1}$ whose limit is denoted $G$. Then $B G$ classifies stable spherical fibrations. \hypertarget{as_module_bundles}{}\subsubsection*{{As $(\infty,1)$-module bundles}}\label{as_module_bundles} (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{adams_conjecture}{}\subsubsection*{{Adams conjecture}}\label{adams_conjecture} The [[Adams conjecture]] (a theorem) characterizes certain spherical fibrations in the image of the [[J-homomorphism]] as trivial. \hypertarget{gysin_sequence}{}\subsubsection*{{Gysin sequence}}\label{gysin_sequence} The [[long exact sequence in cohomology]] induced by a spherical fibration is called a \emph{[[Gysin sequence]]}. \hypertarget{rational_homotopy_type}{}\subsubsection*{{Rational homotopy type}}\label{rational_homotopy_type} See \emph{[[Sullivan model of a spherical fibration]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sphere spectrum]] \item [[Thom spectrum]] \item [[twisted cohomotopy]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} An original reference is \begin{itemize}% \item [[Albrecht Dold]], [[Richard Lashof]], \emph{Principal quasifibrations and fibre homotopy equivalence of bundles}, 1958 (\href{http://www.maths.ed.ac.uk/~aar/papers/doldlashof.pdf}{pdf}) \end{itemize} Treatment of the classifying space for spherical fibrations is in \begin{itemize}% \item [[James Stasheff]], \emph{A classification theorem for fibre spaces}, Topology Volume 2, Issue 3, October 1963, Pages 239-246. \end{itemize} Reviews include \begin{itemize}% \item [[Raoul Bott]], [[Loring Tu]], Chapter 11 of \emph{[[Differential Forms in Algebraic Topology]]}, Graduate Texts in Mathematics 82, Springer 1982 (\href{https://doi.org/10.1007/BFb0063500}{doi:10.1007/BFb0063500}) \item Howard Marcum, Duane Randall, \emph{The homotopy Thom class of a spherical fibration}, Proceedings of the AMS, volume 80, number 2 (\href{http://www.maths.ed.ac.uk/~aar/papers/marcum1.pdf}{pdf}) \item Per Holm, Jon Reed, section 7 of \emph{Structure theory of manifolds}, Seminar notes 1971\href{http://www.mn.uio.no/math/tjenester/kunnskap/kompendier/seminar-holm.pdf}{pdf} \item Oliver Straser, Nena R\"o{}ttgens, \emph{Spivak normal fibrations} (\href{http://www.map.mpim-bonn.mpg.de/images/b/be/Regensburg2012Talk5.pdf}{pdf}) \item S. Husseini, \emph{Spherical fibrations} (\href{http://www.maths.ed.ac.uk/~aar/papers/husseini2.pdf}{pdf}) \end{itemize} \hypertarget{in_rational_homotopy_theory}{}\subsubsection*{{In rational homotopy theory}}\label{in_rational_homotopy_theory} Discussion in [[rational homotopy theory]] (for more see at \emph{[[Sullivan model of a spherical fibration]]}): \begin{itemize}% \item [[Yves Félix]], [[Steve Halperin]] and J.C. Thomas, p. 202 of \emph{Rational Homotopy Theory}, Graduate Texts in Mathematics, 205, Springer-Verlag, 2000 \item [[Jesper Møller]], [[Martin Raussen]], \emph{Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces}, Transactions of the American Mathematical Society Vol. 292, No. 2 (Dec., 1985), pp. 721-732 (\href{https://www.jstor.org/stable/2000242}{jstor:2000242}) \item [[Ralph Cohen]], [[Alexander Voronov]], \emph{Notes on string topology} (\href{https://arxiv.org/abs/math/0503625}{arXiv:math/0503625}) \item [[Yves Félix]], John Oprea, [[Daniel Tanré]], Prop. 2.3 in \emph{Lie-model for Thom spaces of tangent bundles}, Proc. Amer. Math. Soc. 144 (2016), 1829-1840 (\href{http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12829-8/S0002-9939-2015-12829-8.pdf}{pdf}, \href{https://doi.org/10.1090/proc/12829}{doi:10.1090/proc/12829}) \end{itemize} [[!redirects spherical fibrations]] [[!redirects sphere bundle]] [[!redirects sphere bundles]] \end{document}