\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spherical object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{spherical_objects}{Spherical objects}\dotfill \pageref*{spherical_objects} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_theory_}{The theory $\Pi_\mathcal{A}$}\dotfill \pageref*{the_theory_} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{algebras}{$\Pi_\mathcal{A}$-algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{example_2}{Example}\dotfill \pageref*{example_2} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Spherical objects in a general [[pointed category|pointed]] [[model category]] play the role of the spheres in $Top$. \hypertarget{spherical_objects}{}\subsection*{{Spherical objects}}\label{spherical_objects} Let $\mathcal{C}$ be a [[pointed category|pointed]] [[model category]]. \begin{udefn} A \textbf{spherical object} for $\mathcal{C}$ is a [[model category|cofibrant]] homotopy [[cogroup]] in $\mathcal{C}$. \end{udefn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item The spheres form the obvious examples of spherical objects in the category $Top$, but the rational spheres give other examples. \item In the category of path connected pointed spaces with action of a discrete group, $Gr.Top^*_0$ and space of form $S^n_G= \bigvee_G S^n$ is a spherical object.(see Baues, 1991, ref. below, p.273). \item Any rational sphere is a sphere object (in a suitable category for [[rational homotopy theory]]). \item Let $T$ be a contractible locally finite 1-dimensional simplicial complex, with $T^0$ its 0-skeleton. Let $\epsilon : E'T^0$ be a finite-to-one function. By $S^n_\epsilon$ we mean the space obtained by attaching an $n$-sphere to the vertices of $T$ with at vertex $v$, the spheres attached to $v$ being indexed by $\epsilon^{-1}(v)$. This space $S^n_\epsilon$ is a spherical object in the proper category, $Proper_\infinity^T$, of $T$-based spaces. (In this context $T$ is acting as the analogue of the base point. It gives a base tree within the spaces. This is explored a bit more in [[proper homotopy theory]].) \end{enumerate} For instance, take $T = \mathbb{R}_{\geq 0}$, made up of an infinite number of closed unit intervals (end-to-end), then $S^n_\epsilon$ will be the infinite string of spheres considered in the entry on the [[Brown-Grossmann homotopy groups]] if we take $\epsilon$ to be the identity function on $T^0$. \begin{udefn} By a \textbf{family of spherical objects} for $\mathcal{C}$ is meant a collection of spherical objects in $\mathcal{C}$ closed under suspension. \end{udefn} \hypertarget{the_theory_}{}\subsection*{{The theory $\Pi_\mathcal{A}$}}\label{the_theory_} Let $\mathcal{A}$ be such a family of spherical objects. Let $\Pi_\mathcal{A}$ denote the full subcategory of $Ho(\mathcal{C})$, whose objects are the finite coproducts of objects from $\mathcal{A}$. \hypertarget{example}{}\subsubsection*{{Example}}\label{example} For $\mathcal{A} = \{S^n\}^\infty_{n=1}$ in $Top$, $\Pi_\mathcal{A} = \Pi$, the [[algebraic theory|theory]] of [[Pi-algebras]]. Of course, $\Pi_\mathcal{A}$ is a \emph{finite product theory} in the sense of [[algebraic theories]], and the corresponding models/algebras/modules are called: \hypertarget{algebras}{}\subsection*{{$\Pi_\mathcal{A}$-algebras}}\label{algebras} We thus have that these are the product preserving functors $\Lambda : \Pi_\mathcal{A}^{op}\to Set_*$. Morphisms of $\Pi_\mathcal{A}$-algebras are simply the natural transformations. This gives a category $\Pi_\mathcal{A}-Alg$. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \begin{itemize}% \item Such a $\Pi_\mathcal{A}$-algebra, $\Lambda$, is determined by its values $\Lambda(A)\in Set_*$ for $A$ in $\mathcal{A}$, together with, for every $\xi\colon A \to \bigsqcup_{i\in I}A_i$ in $\Pi_\mathcal{A}$, a map \end{itemize} \begin{displaymath} \xi^*\colon \prod \Lambda(A_i)\to \Lambda(A). \end{displaymath} \begin{itemize}% \item The object $A$ being a (homotopy) cogroup, $\Lambda(A)$ is a group (but beware the $\xi^*$ need not be group homomorphisms). \end{itemize} \hypertarget{example_2}{}\subsubsection*{{Example}}\label{example_2} If $X$ is in $\mathcal{C}$, define $\pi_\mathcal{A}(X):= [-,X]_{Ho(\mathcal{C})} : \Pi_{\mathcal{A}}^{op}\to Set_*$. This is the \textbf{homotopy $\Pi_{\mathcal{A}}$-algebra} of $X$. As with $\Pi$-[[Pi-algebra|algebras]], there is a \emph{realisablity problem}, i.e., given $\Lambda$, find a $X$ and an isomorphism, $\pi_\mathcal{A}(X)\cong \Lambda$. The realisability problem is discussed in Baues-Blanc (2010) (see below). \hypertarget{references}{}\subsection*{{References}}\label{references} Spherical objects are considered in \begin{itemize}% \item [[Hans-Joachim Baues]] and [[David Blanc]], Comparing cohomology obstructions, (2010), \href{http://arxiv.org/PS_cache/arxiv/pdf/1008/1008.1712v1.pdf}{Arxiv} (to appear JPAA). \end{itemize} Examples are given in earlier work by Baues and by Blanc. The group action case is in \begin{itemize}% \item [[Hans-Joachim Baues]], \emph{Combinatorial Homotopy and 4-Dimensional Complexes}, de Gruyter Expositions in Mathematics 2, Walter de Gruyter, (1991). \end{itemize} The example from [[proper homotopy theory]] is discussed in \begin{itemize}% \item H.-J. Baues and Antonio Quintero, \emph{Infinite Homotopy Theory}, K-monographs in mathematics, Volume 6, Kluwer, 2001. \end{itemize} [[!redirects spherical object]] [[!redirects spherical objects]] [[!redirects spherical object and Pi(A)-algebra]] [[!redirects spherical object and Pi(A)-algebras]] [[!redirects spherical objects and Pi(A)-algebra]] [[!redirects spherical objects and Pi(A)-algebras]] \end{document}