\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spin^c} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{group_extension}{Group extension}\dotfill \pageref*{group_extension} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{AsHomotopyFiberOfSmoothW3}{As the homotopy fiber of the smooth $\mathbf{W}_3$}\dotfill \pageref*{AsHomotopyFiberOfSmoothW3} \linebreak \noindent\hyperlink{relation_to_metaplectic_group_}{Relation to metaplectic group $Mp^c$}\dotfill \pageref*{relation_to_metaplectic_group_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{remark} \label{}\hypertarget{}{} By definition of the [[spin group]] $Spin(n)$ there is a canonical inclusion \begin{displaymath} \mathbb{Z}/2\mathbb{Z}\hookrightarrow Spin(n) \end{displaymath} of the [[group of order 2]]. For $Spin(n)\hookrightarrow GL_1(Cl(\mathbb{R}^n))$ canonically realized by even [[Clifford algebra]] elements of unit norm, this is given by the inclusion of $\{+1,-1\}$. \end{remark} \begin{quote}% We frequently write $\mathbb{Z}_2$ as shorthand for $\mathbb{Z}/2\mathbb{Z}$. \end{quote} \begin{defn} \label{DirectDefinitionOfSpinC}\hypertarget{DirectDefinitionOfSpinC}{} For $n \in \mathbb{N}$, the [[Lie group]] $Spin^c(n)$ is the [[quotient group]] \begin{displaymath} \begin{aligned} Spin^c & \coloneqq Spin \times_{\mathbb{Z}_2} U(1) \\ & = (Spin \times U(1))/{\mathbb{Z}_2} \,, \end{aligned} \end{displaymath} of the [[product]] of the [[spin group]] with the [[circle group]] by the common [[subgroup|sub]]-[[group of order 2]] $\mathbb{Z}_2 \hookrightarrow \mathbb{Z}$ and $\mathbb{Z}_2 \hookrightarrow U(1)$. \end{defn} Some authors (e.g. \hyperlink{Gompf97}{Gompf 97, p. 2}) denote this as \begin{displaymath} \begin{aligned} Spin^c(n) & \coloneqq Spin(n)\cdot Spin(2) \\ & \simeq Spin(n) \cdot U(1) \end{aligned} \end{displaymath} following the notation [[Sp(n).Sp(1)]] (see \href{SpnSp1#SpinnSpin2IsSpinc}{there}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{group_extension}{}\subsubsection*{{Group extension}}\label{group_extension} \begin{prop} \label{}\hypertarget{}{} We have a [[short exact sequence]] \begin{displaymath} U(1) \to Spin^c \to SO \,, \end{displaymath} where $U(1) \to Spin^c$ is the canonical inclusion into the defining product $U(1) \to Spin \times U(1) \to Spin \times_{\mathbb{Z}_2} U(1)$. \end{prop} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \hypertarget{AsHomotopyFiberOfSmoothW3}{}\subsubsection*{{As the homotopy fiber of the smooth $\mathbf{W}_3$}}\label{AsHomotopyFiberOfSmoothW3} We discuss in the following that \begin{enumerate}% \item the universal third [[integral Stiefel-Whitney class]] $W_3$ has an essentially unique lift from [[∞Grpd]] $\simeq$ [[Top]] to [[Smooth∞Grpd]]; \item the smooth [[delooping]] $\mathbf{B}Spin^c \in Smooth\infty Grpd$ is the [[homotopy fiber]] of $\mathbf{W}_3$, hence is the [[circle n-bundle|circle 2-bundle]] over $\mathbf{B} SO$ classified by $\mathbf{W}_3$. \end{enumerate} \begin{prop} \label{SpinCAsHomotopyPullbackOfW2AndC1}\hypertarget{SpinCAsHomotopyPullbackOfW2AndC1}{} We have a [[homotopy pullback]] diagram \begin{displaymath} \itexarray{ \mathbf{B} Spin^c &\stackrel{\mathbf{B}det}{\to}& \mathbf{B}U(1) \\ \downarrow && \downarrow^{\mathrlap{\mathbf{c}_1 mod 2}} \\ \mathbf{B} SO &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 } \end{displaymath} in [[Smooth∞Grpd]], where \begin{itemize}% \item the right morphism is the universal first [[Chern class]] modulo 2; \item the bottom morphism is the universal second [[Stiefel-Whitney class]]. \end{itemize} \end{prop} \begin{proof} We present the sitation as usual in the projective [[model structure on simplicial presheaves]] over [[CartSp]] by [[∞-anafunctors]]. The first [[Chern class]] is given by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \mathbf{B}(\mathbb{Z} \to \mathbb{R}) &\stackrel{\mathbf{c}_1}{\to}& \mathbf{B}(\mathbb{Z} \to 1) = \mathbf{B}^2 \mathbb{Z} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B} U(1) } \,, \end{displaymath} where $(G_1 \to G_0)$ denotes a presentation of a [[strict 2-group]] by a [[crossed module]]. The second [[Stiefel-Whitney class]] is given by \begin{displaymath} \itexarray{ \mathbf{B}(\mathbb{Z}_2 \to Spin) &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}(\mathbb{Z}_2 \to 1) = \mathbf{B}^2 \mathbb{Z}_2 \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B} SO } \,. \end{displaymath} Notice that the top horizontal morphism here is a [[fibration]]. Therefore the [[homotopy pullback]] in question is (as discussed there) given by the ordinary [[pullback]] $Q$ in \begin{displaymath} \itexarray{ Q &\to& \mathbf{B}(\mathbb{Z} \to \mathbb{R}) \\ \downarrow && \downarrow \\ \mathbf{B}(\mathbb{Z}_2 \to Spin) &\to& \mathbf{B}^2 \mathbb{Z}_2 } \,. \end{displaymath} This pullback is $\mathbf{B}(\mathbb{Z} \stackrel{\partial}{\to} Spin \times \mathbb{R})$, where \begin{displaymath} \partial\colon n \mapsto ( n \,mod\, 2 , n) \,. \end{displaymath} This is equivalent to \begin{displaymath} \begin{aligned} (\mathbb{Z} \stackrel{\partial}{\to} Spin \times \mathbb{R}) & \simeq (\mathbb{Z}_2 \stackrel{\partial'}{\to} Spin \times (\mathbb{R}/2\mathbb{Z})) \\ & \simeq (\mathbb{Z}_2 \stackrel{\partial'}{\to} Spin \times U(1)) \end{aligned} \,, \end{displaymath} (notice the non-standard identification $U(1) \simeq \mathbb{R}/(2\mathbb{Z})$ here, which is important below in prop. \ref{UniversalDeterminantLineBundleMap} for the identification of $det$) where now $\partial'$ is the [[diagonal]] embedding of the [[subgroup]] \begin{displaymath} \partial'\colon \sigma \mapsto (\sigma, \sigma) \,. \end{displaymath} This in turn is equivalent to \begin{displaymath} \mathbf{B} (Spin \times_{\mathbb{Z}_2} U(1)) \,, \end{displaymath} which is def. \ref{DirectDefinitionOfSpinC}. \end{proof} \begin{remark} \label{}\hypertarget{}{} Compare this with the similar but different [[homotopy pullback]] that defines the [[spin group]] \begin{displaymath} \itexarray{ \mathbf{B}Spin &\to& * \\ \downarrow && \downarrow \\ \mathbf{B}SO &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 } \end{displaymath} \end{remark} \begin{prop} \label{UniversalDeterminantLineBundleMap}\hypertarget{UniversalDeterminantLineBundleMap}{} Under the identificaton $Spin^c \simeq Spin \underset{\mathbb{Z}_2}{\times} U(1)$ the ``universal [[determinant line bundle]] map'' \begin{displaymath} det \colon Spin^c \to U(1) \end{displaymath} is given in components by \begin{displaymath} (g,c) \mapsto 2 c \end{displaymath} (where on the right we write the group structure additively). \end{prop} \begin{proof} By the proof of prop. \ref{SpinCAsHomotopyPullbackOfW2AndC1} the $U(1)$-factor in $Spin^c \simeq Spin \underset{\mathbb{Z}_2}{\times}U(1)$ arises from the identification $U(1) \simeq \mathbb{R}/2\mathbb{Z}$. But under the horizontal map as it appears in the homotopy pullback in that proof this corresponds to multiplication by 2. \end{proof} \begin{prop} \label{SmoothRefinementOfBockstein}\hypertarget{SmoothRefinementOfBockstein}{} The third \emph{[[integral Stiefel-Whitney class]]} \begin{displaymath} W_3 \coloneqq \beta_2 \circ w_2 \colon B SO \stackrel{w_2}{\to} B^2 \mathbb{Z}_2 \stackrel{\beta_2}{\to} B^3 \mathbb{Z} \end{displaymath} has an essentially unique lift through [[geometric realization]] ${\vert-\vert}\colon$ [[Smooth∞Grpd]] $\stackrel{\Pi}{\to}$ [[∞Grpd]] $\stackrel{\simeq}{\to}$ [[Top]] given by \begin{displaymath} \mathbf{W}_3 = \mathbf{\beta}_2 \circ \mathbf{w}_2 \colon \mathbf{B} SO(n) \stackrel{w_2}{\to} \mathbf{B}^2 \mathbb{Z}_2 \stackrel{\mathbf{\beta}_2}{\to} \mathbf{B}^2 U(1) \,, \end{displaymath} where $\mathbf{\beta}_2$ is simply given by the canonical subgroup embedding. \end{prop} \begin{proof} Once we establish that this is a lift at all, the essential uniqueness follows from the respective theorem at [[smooth ∞-groupoid -- structures]]. The ordinary [[Bockstein homomorphism]] $\beta_2$ is presented by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \mathbf{B}^2(\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z}) &\to& \mathbf{B}^2 (\mathbb{Z} \to 1) = \mathbf{B}^3 \mathbb{Z} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}^2 \mathbb{Z}_2 } \,. \end{displaymath} Accordingly we need to lift the canonical presentation of $\mathbf{\beta}_2$ to a comparable $\infty$-anafunctor. This is accomplished by \begin{displaymath} \itexarray{ \mathbf{B}^2(\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z}) &\stackrel{\hat \mathbf{\beta}_2}{\to}& \mathbf{B}^2 (\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{R}) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}^2 \mathbb{Z}_2 &\stackrel{\mathbf{\beta}_2}{\to}& \mathbf{B}^2 U(1) } \,. \end{displaymath} Here the top horizontal morphism is induced from the morphism of [[crossed module]]s that is given by the commuting diagram \begin{displaymath} \itexarray{ \mathbb{Z} &\stackrel{id}{\to}& \mathbb{Z} \\ \downarrow^{\mathrlap{\cdot 2}} && \downarrow^{\mathrlap{\cdot 2}} \\ \mathbb{Z} &\stackrel{}{\hookrightarrow}& \mathbb{R} } \,. \end{displaymath} Since $\mathbb{R}$ is contractible, we have indeed under [[geometric realization]] an equivalence \begin{displaymath} \itexarray{ \vert\mathbf{B}^2(\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z})\vert &\stackrel{\vert \hat {\mathbf{\beta}}_2\vert}{\to}& \vert \mathbf{B}^2 (\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{R}) \vert \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \vert\mathbf{B}^2(\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z})\vert &\to& \vert\mathbf{B}^2(\mathbb{Z} \to 1)\vert \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \vert B^2 \mathbb{Z}_2\vert & \stackrel{\beta_2}{\to}& \vert B^3 \mathbb{Z}\vert } \,. \end{displaymath} \end{proof} \begin{prop} \label{HomotopyFiberOfSmoothBeta2}\hypertarget{HomotopyFiberOfSmoothBeta2}{} The sequence \begin{displaymath} \mathbf{B} U(1) \stackrel{\mathbf{c}_1 mod 2}{\to} \mathbf{B}^2 \mathbb{Z}_2 \stackrel{\mathbf{\beta}_2}{\to} \mathbf{B}^2 U(1) \,, \end{displaymath} where $\mathbf{\beta}_2$ is the smoothly refined [[Bockstein homomorphism]] from prop. \ref{SmoothRefinementOfBockstein}, is a [[fiber sequence]]. \end{prop} \begin{proof} The homotopy fiber of $\mathbf{B} \mathbb{Z}_2 \to \mathbf{B}U(1)$ is $U(1)/\mathbb{Z}_2 \simeq U(1)$. Thinking of this is $(\mathbb{Z} \stackrel{\cdot 1/2}{\to} \mathbb{R})$ one sees that the inclusion of this fiber is indeed $\mathbf{c}_1 mod 2$. \end{proof} \begin{prop} \label{}\hypertarget{}{} The [[delooping]] $\mathbf{B}Spin^c$ of the Lie group $Spin^c$ in [[Smooth∞Grpd]] is the [[homotopy fiber]] of the universal third smooth [[integral Stiefel-Whitney class]] from \ref{SmoothRefinementOfBockstein}. \begin{displaymath} \mathbf{B}Spin^c \to \mathbf{B} SO \stackrel{\mathbf{W}_3}{\to} \mathbf{B}^2 U(1) \,, \end{displaymath} \end{prop} \begin{proof} Then consider the [[pasting diagram]] of [[homotopy pullbacks]] \begin{displaymath} \itexarray{ \mathbf{B}Spin^c &\to& \mathbf{B} U(1) &\to& {*} \\ \downarrow && \downarrow^{\mathrlap{\mathbf{c}_1 mod 2}} && \downarrow \\ \mathbf{B} SO &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 &\stackrel{\mathbf{\beta}_2}{\to}& \mathbf{B}^2 U(1) } \,. \end{displaymath} The right square is a homotopy pullback by prop. \ref{HomotopyFiberOfSmoothBeta2}. The left square is a homotopy pullback by prop. \ref{SpinCAsHomotopyPullbackOfW2AndC1}. The bottom composite is the smooth $\mathbf{W}_3$ by prop \ref{SmoothRefinementOfBockstein}. This implies by claim by the [[pasting law]]. \end{proof} \hypertarget{relation_to_metaplectic_group_}{}\subsubsection*{{Relation to metaplectic group $Mp^c$}}\label{relation_to_metaplectic_group_} There is a direct analogy between [[Spin]], [[Spin{\tt \symbol{94}}c]] and the [[metaplectic groups]] [[Mp]] and [[Mp{\tt \symbol{94}}c]] (see there for more). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spin group]], \textbf{$Spin^c$-group}, [[spin structure]] \item [[spin{\tt \symbol{94}}c structure]], [[twisted spin{\tt \symbol{94}}c structure]] \item [[string 2-group]], [[string structure]] \item [[string{\tt \symbol{94}}c 2-group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See also \begin{itemize}% \item [[Robert Gompf]], \emph{$Spin^c$ structures and homotopy equivalences}, Geom. Topol. 1 (1997) 41-50 (\href{https://arxiv.org/abs/math/9705218}{arXiv:math/9705218}) \end{itemize} [[!redirects spin{\tt \symbol{94}}c group]] [[!redirects Spin{\tt \symbol{94}}c]] \end{document}