\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spin^c structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{topological}{Topological}\dotfill \pageref*{topological} \linebreak \noindent\hyperlink{smooth}{Smooth}\dotfill \pageref*{smooth} \linebreak \noindent\hyperlink{Higher}{Higher $spin^c$-structures}\dotfill \pageref*{Higher} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{PropertiesOfSpinC}{Of $Spin^c$}\dotfill \pageref*{PropertiesOfSpinC} \linebreak \noindent\hyperlink{as_orientation}{As $KU$-orientation}\dotfill \pageref*{as_orientation} \linebreak \noindent\hyperlink{RelationToMetaplecticStructures}{Relation to metaplectic structures}\dotfill \pageref*{RelationToMetaplecticStructures} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{FromAlmostComplexStructures}{From almost complex structures}\dotfill \pageref*{FromAlmostComplexStructures} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_orientationanomaly_cancellation_in_type_ii_string_theory}{As $KU$-orientation/anomaly cancellation in type II string theory}\dotfill \pageref*{as_orientationanomaly_cancellation_in_type_ii_string_theory} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{topological}{}\subsubsection*{{Topological}}\label{topological} For $n \in \mathbb{N}$ the [[Lie group]] [[spin{\tt \symbol{94}}c|spin]] is a [[central extension]] \begin{displaymath} U(1) \to Spin^c(n) \to SO(n) \end{displaymath} of the [[special orthogonal group]] by the [[circle group]]. This comes with a long [[fiber sequence]] \begin{displaymath} \cdots \to B U(1) \to B Spin^c(n) \to B SO(n) \stackrel{W_3}{\to} B^2 U(1) \,, \end{displaymath} where $W_3$ is the \emph{third [[integral Stiefel-Whitney class]]} . An [[oriented]] manifold $X$ \textbf{has $Spin^c$-structure} if the [[characteristic class]] $[W_3(X)] \in H^3(X, \mathbb{Z})$ \begin{displaymath} W_3(X) \coloneqq W_3(T X) \;\colon\; X \stackrel{T X}{\to} B SO(n) \stackrel{W_3}{\to} B^2 U(1) \simeq K(\mathbb{Z},3) \end{displaymath} is trivial. This is the [[Dixmier-Douady class]] of the [[circle n-bundle|circle 2-bundle]]/[[bundle gerbe]] that [[obstruction|obstructs]] the existence of a $Spin^c$-[[principal bundle]] [[lift of structure group|lifting]] the given [[tangent bundle]]. A manifold $X$ is \textbf{equipped with $Spin^c$-structure} $\eta$ if it is equipped with a choice of trivializaton \begin{displaymath} \eta : 1 \stackrel{\simeq}{\to} W_3(T X) \,. \end{displaymath} The [[homotopy type]]/[[∞-groupoid]] of $Spin^c$-structures on $X$ is the [[homotopy fiber]] $W_3 Struc(T X)$ in the [[pasting diagram]] of [[homotopy pullback]]s \begin{displaymath} \itexarray{ W_3 Struc(T X) &\to& W_3 Struc(X) &\to& * \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{T X}{\to}& Top(X, B SO(n)) &\stackrel{W_3}{\to}& Top(X,B^2 U(1)) } \,. \end{displaymath} If the class does not vanish and if hence there is no $Spin^c$-structure, it still makes sense to discuss the structure that remains as \emph{[[twisted spin{\tt \symbol{94}}c structure|twisted spin structure]]} . \hypertarget{smooth}{}\subsubsection*{{Smooth}}\label{smooth} Since $U(1) \to Spin^c \to SO$ is a sequence of [[Lie group]]s, the above may be lifted from the [[(∞,1)-topos]] $L_{whe}$ [[Top]] $\simeq$ [[∞Grpd]] of [[discrete ∞-groupoids]] to that of [[smooth ∞-groupoids]], [[Smooth∞Grpd]]. More in detail, by the discussion at [[Lie group cohomology]] (and [[smooth ∞-groupoid -- structures]]) the characteristic map $W_3 : B SO \to B^2 U(1)$ in $\infty Grpd$ has, up to equivalence, a unique lift \begin{displaymath} \mathbf{W}_3 : \mathbf{B} SO \to \mathbf{B}^2 U(1) \end{displaymath} to [[Smooth∞Grpd]], where on the right we have the [[delooping]] of the smooth [[circle n-group|circle 2-group]]. Accordingly, the [[2-groupoid]] of \emph{smooth $spin^c$-structures} $\mathbf{W}_3 Struc(X)$ is the joint [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{W}_3 Struc(T X) &\to& \mathbf{W}_3 Struc(X) &\to& * \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{T X}{\to}& Smooth \infty Grpd(X, \mathbf{B} SO(n)) &\stackrel{\mathbf{W}_3}{\to}& Smooth \infty Grpd(X,\mathbf{B}^2 U(1)) } \,. \end{displaymath} \hypertarget{Higher}{}\subsubsection*{{Higher $spin^c$-structures}}\label{Higher} In parallel to the existence of \href{spin+structure#Higher}{higher spin structures} there are higher analogs of $Spin^c$-structures, related to [[quantum anomaly]] cancellation of theories of higher dimensional [[branes]]. \begin{itemize}% \item [[string{\tt \symbol{94}}c structure|string structure]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{PropertiesOfSpinC}{}\subsubsection*{{Of $Spin^c$}}\label{PropertiesOfSpinC} \begin{defn} \label{}\hypertarget{}{} The group $Spin^c$ is the [[fiber product]] \begin{displaymath} \begin{aligned} Spin^c & := Spin \times_{\mathbb{Z}_2} U(1) \\ & = (Spin \times U(1))/{\mathbb{Z}_2} \,, \end{aligned} \end{displaymath} where in the second line the [[action]] is the diagonal action induced from the two canonical embeddings of [[subgroups]] $\mathbb{Z}_2 \hookrightarrow \mathbb{Z}$ and $\mathbb{Z}_2 \hookrightarrow U(1)$. \end{defn} \begin{prop} \label{SpinCAsHomotopyFiberProductW2C1}\hypertarget{SpinCAsHomotopyFiberProductW2C1}{} We have a [[homotopy pullback]] diagram \begin{displaymath} \itexarray{ \mathbf{B} Spin^c &\to& \mathbf{B}U(1) \\ \downarrow && \downarrow^{\mathrlap{\mathbf{c}_1 mod 2}} \\ \mathbf{B} SO &\stackrel{w_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 } \,. \end{displaymath} \end{prop} \begin{proof} We present this as usual by [[simplicial presheaves]] and [[∞-anafunctors]]. The first [[Chern class]] is given by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \mathbf{B}(\mathbb{Z} \to \mathbb{R}) &\stackrel{c_1}{\to}& \mathbf{B}(\mathbb{Z} \to 1) = \mathbf{B}^2 \mathbb{Z} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B} U(1) } \,. \end{displaymath} The second [[Stiefel-Whitney class]] is given by \begin{displaymath} \itexarray{ \mathbf{B}(\mathbb{Z}_2 \to Spin) &\stackrel{w_2}{\to}& \mathbf{B}(\mathbb{Z}_2 \to 1) = \mathbf{B}^2 \mathbb{Z}_2 \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B} SO } \,. \end{displaymath} Notice that the top horizontal morphism here is a [[fibration]]. Therefore the [[homotopy pullback]] in question is given by the ordinary pullback \begin{displaymath} \itexarray{ Q &\to& \mathbf{B}(\mathbb{Z} \to \mathbb{R}) \\ \downarrow && \downarrow \\ \mathbf{B}(\mathbb{Z}_2 \to Spin) &\to& \mathbf{B}^2 \mathbb{Z}_2 } \,. \end{displaymath} This pullback is $\mathbf{B}(\mathbb{Z} \stackrel{\partial}{\to} Spin \times \mathbb{R})$, where \begin{displaymath} \partial : n \mapsto ( n mod 2 , n) \,. \end{displaymath} This is equivalent to \begin{displaymath} \mathbf{B}(\mathbb{Z}_2 \stackrel{\partial'}{\to} Spin \times U(1)) \end{displaymath} where now \begin{displaymath} \partial' : \sigma \mapsto (\sigma, \sigma) \,. \end{displaymath} This in turn is equivalent to \begin{displaymath} \mathbf{B} (Spin \times_{\mathbb{Z}_2} U(1)) \,, \end{displaymath} which is the original definition. \end{proof} This factors the above characterization of $\mathbf{B}Spin^c$ as the homotopy fiber of $\mathbf{W}_3$: \begin{prop} \label{}\hypertarget{}{} We have a [[pasting diagram]] of [[homotopy pullbacks]] of [[smooth infinity-groupoids]] of the form \begin{displaymath} \itexarray{ \mathbf{B} Spin^c &\to& \mathbf{B}U(1) &\to& \ast \\ \downarrow && \downarrow^{\mathrlap{c_1 \, mod\, 2}} && \downarrow \\ \mathbf{B}SO &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 &\stackrel{\mathbf{\beta}_2}{\to}& \mathbf{B}^2 U(1) } \,. \end{displaymath} \end{prop} This is discussed at \emph{\href{spin%5Ec#AsHomotopyFiberOfSmoothW3}{Spin{\tt \symbol{94}}c -- Properties -- As the homotopy fiber of smooth w3}}. \hypertarget{as_orientation}{}\subsubsection*{{As $KU$-orientation}}\label{as_orientation} For $X$ an [[orientation|oriented]] [[manifold]], the map $X \to \ast$ is [[orientation in generalized cohomology|generalized oriented]] in [[periodic complex K-theory]] precisely if $X$ has a $Spin^c$-structure. \hypertarget{RelationToMetaplecticStructures}{}\subsubsection*{{Relation to metaplectic structures}}\label{RelationToMetaplecticStructures} Let $(X,\omega)$ be a [[compact topological space|compact]] [[symplectic manifold]] equipped with a [[Kähler polarization]] $\mathcal{P}$ hence a [[Kähler manifold]] structure $J$. A [[metaplectic structure]] of this data is a choice of square root $\sqrt{\Omega^{0,n}}$ of the [[canonical line bundle]]. This is equivalently a [[spin structure]] on $X$ (see the discussion at \emph{[[Theta characteristic]]}). Now given a [[prequantum line bundle]] $L_\omega$, in this case the \href{geometric+quantization#IndexOfDolbeaultDiracOperator}{Dolbault quantization} of $L_\omega$ coincides with the [[spin{\tt \symbol{94}}c quantization|spin quantization]] of the [[spin{\tt \symbol{94}}c structure|spin structure]] induced by $J$ and $L_\omega \otimes \sqrt{\Omega^{0,n}}$. This appears as (\hyperlink{Paradan09}{Paradan 09, prop. 2.2}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{FromAlmostComplexStructures}{}\subsubsection*{{From almost complex structures}}\label{FromAlmostComplexStructures} An [[almost complex structure]] canonically induces a $Spin^c$-structure: \begin{prop} \label{}\hypertarget{}{} For all $n \in \mathbb{N}$ we have a homotopy-[[commuting diagram]] \begin{displaymath} \itexarray{ \mathbf{B}U(n) &\to& \mathbf{B}U(1) \\ \downarrow &\swArrow& \downarrow^{\mathrlap{\mathbf{c_1} mod 2}} \\ \mathbf{B}SO(2n) &\stackrel{\mathbf{w}_2}{\to}& \mathbf{B}^2 \mathbb{Z}_2 } \,, \end{displaymath} where the vertical morphism is the canonical morphism induced from the identification of real vector spaces $\mathbb{C} \to \mathbb{R}^2$, and where the top morphism is the canonical projection $\mathbf{B}U(n) \to \mathbf{B}U(1)$ (induced from $U(n)$ being the [[semidirect product group]] $U(n) \simeq SU(n) \rtimes U(1)$). \end{prop} \begin{proof} By the general relation between $c_1$ of an [[almost complex structure]] and $w_2$ of the underlying orthogonal structure, discussed at \emph{\hyperlink{Stiefel-Whitney+class#RelationToChernClasses}{Stiefel-Whitney class -- Relation to Chern classes}}. \end{proof} \begin{remark} \label{}\hypertarget{}{} By prop. \ref{SpinCAsHomotopyFiberProductW2C1} and the [[universal property]] of the [[homotopy pullback]] this induces a canonical morphism \begin{displaymath} k \colon \mathbf{B}U(n) \to \mathbf{B}Spin^c \,. \end{displaymath} \end{remark} and this is the universal morphism from almost complex structures: \begin{defn} \label{}\hypertarget{}{} For $c \colon X \to \mathbf{B}U(n)$ modulating an [[almost complex structure]]/[[complex vector bundle]] over $X$, the composite \begin{displaymath} k c \colon X \stackrel{c}{\to} \mathbf{B}U(n) \stackrel{k}{\to} \mathbf{B}Spin^c \end{displaymath} is the corresponding $Spin^c$-structure. \end{defn} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spin{\tt \symbol{94}}c|spin]] \item [[twisted differential c-structures|(twisted, differential) c-structures]] \begin{itemize}% \item [[orientation]] \item [[spin structure]], [[twisted spin structure]], [[differential spin structure]] \textbf{$spin^c$ structure}, [[twisted spin{\tt \symbol{94}}c structure|twisted spin structure]], [[K-orientation]] [[Spin{\tt \symbol{94}}c Dirac operator|Spin Dirac operator]] \item [[string structure]], [[twisted differential string structure]], \item [[string{\tt \symbol{94}}c 2-group|string 2-group]], [[string{\tt \symbol{94}}c structure|string structure]] \item [[fivebrane structure]], [[twisted differential fivebrane structure]] \end{itemize} \item [[spin{\tt \symbol{94}}c quantization|spin quantization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A canonical textbook reference is \begin{itemize}% \item H.B. Lawson and M.-L. Michelson, \emph{Spin Geometry} , Princeton University Press, Princeton, NJ, (1989) \end{itemize} Other accounts include \begin{itemize}% \item Blake Mellor, \emph{$Spin^c$-manifolds} ([[BlakeSpinC.pdf:file]]) \item \emph{Stable complex and $Spin^c$-structures} ([[StableComplexSpinC.pdf:file]]) \item [[Peter Teichner]], Elmar Vogt, \emph{All 4-manifolds have $Spin^c$-structures} (\href{http://people.mpim-bonn.mpg.de/teichner/Papers/spin.pdf}{pdf}) \end{itemize} \hypertarget{as_orientationanomaly_cancellation_in_type_ii_string_theory}{}\subsubsection*{{As $KU$-orientation/anomaly cancellation in type II string theory}}\label{as_orientationanomaly_cancellation_in_type_ii_string_theory} That the $U(1)$-[[gauge field]] on a [[D-brane]] in [[type II string theory]] in the absense of a [[B-field]] is rather to be regarded as part of a $spin^c$-structure was maybe first observed in \begin{itemize}% \item [[Edward Witten]], \emph{Baryons and Branes In Anti de Sitter Space}, JHEP 9807:006 (1998) (\href{http://arxiv.org/abs/hep-th/9912086}{arXiv:hep-th/9805112}). \end{itemize} The [[twisted spin{\tt \symbol{94}}c structure|twisted spin structure]] (see there for more details) on the [[worldvolume]] of [[D-branes]] in the presence of a nontrivial [[B-field]] was discussed in \begin{itemize}% \item [[Daniel Freed]], [[Edward Witten]], \emph{Anomalies in String Theory with D-Branes} (\href{http://arxiv.org/abs/hep-th/9907189}{arXiv:hep-th/9907189}) \end{itemize} See at \emph{[[Freed-Witten-Kapustin anomaly cancellation]]}. A more recent review is provided in \begin{itemize}% \item Kim Laine, \emph{Geometric and topological aspects of Type IIB D-branes} (\href{http://arxiv.org/abs/0912.0460}{arXiv:0912.0460}) \end{itemize} See also \begin{itemize}% \item [[Hisham Sati]], \emph{Geometry of $Spin$ and $Spin^c$ structures in the M-theory partition function} (\href{http://arxiv.org/abs/1005.1700}{arXiv:1005.1700}) \end{itemize} The relation to [[metaplectic corrections]] is discussed in \begin{itemize}% \item [[Paul-Emile Paradan]], \emph{Spin-quantization commutes with reduction} (\href{http://arxiv.org/abs/0911.1067}{arXiv:0911.1067}) \end{itemize} See also \begin{itemize}% \item O. Hijazi, S. Montiel, F. Urbano, \emph{$Spin^c$-geometry of K\"a{}hler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds} (\href{http://hal.archives-ouvertes.fr/docs/00/09/81/71/PDF/lagrangian0412.pdf}{pdf}) \end{itemize} [[!redirects spin{\tt \symbol{94}}c structure]] [[!redirects spin{\tt \symbol{94}}c structures]] [[!redirects Spin{\tt \symbol{94}}c structure]] [[!redirects Spin{\tt \symbol{94}}c structures]] [[!redirects spin-c structure]] [[!redirects spin-c structures]] [[!redirects Spin-c structure]] [[!redirects Spin-c structures]] [[!redirects spin{\tt \symbol{94}}c-structure]] [[!redirects spin{\tt \symbol{94}}c-structures]] [[!redirects Spin{\tt \symbol{94}}c-structure]] [[!redirects Spin{\tt \symbol{94}}c-structures]] [[!redirects spin-c-structure]] [[!redirects spin-c-structures]] [[!redirects Spin-c-structure]] [[!redirects Spin-c-structures]] \end{document}