\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{spin group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{higher_lie_theory}{}\paragraph*{{Higher Lie theory}}\label{higher_lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_whitehead_tower_of_orthogonal_group}{Relation to Whitehead tower of orthogonal group}\dotfill \pageref*{relation_to_whitehead_tower_of_orthogonal_group} \linebreak \noindent\hyperlink{ExceptionalIsomorphisms}{Exceptional isomorphisms}\dotfill \pageref*{ExceptionalIsomorphisms} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{spin_geometry}{Spin geometry}\dotfill \pageref*{spin_geometry} \linebreak \noindent\hyperlink{in_physics}{In physics}\dotfill \pageref*{in_physics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{spin group} $Spin(n)$ is the [[universal covering space]] of the [[special orthogonal group]] $SO(n)$. By the usual arguments it inherits a group structure for which the operations are smooth and so is a [[Lie group]] like $SO(n)$. For special cases in low dimensions see at: [[Spin(2)]], [[Spin(3)]], [[Spin(4)]], [[Spin(5)]], [[Spin(6)]], [[Spin(7)]], [[Spin(8)]] \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{QuadraticVectorSpace}\hypertarget{QuadraticVectorSpace}{} A \emph{quadratic vector space} $(V, \langle -,-\rangle)$ is a [[vector space]] $V$ over finite [[dimension]] over a [[field]] $k$ of [[characteristic]] 0, and equipped with a symmetric [[bilinear form]] $\langle -,-\rangle \colon V \otimes V \to k$. \end{defn} Conventions as in (\hyperlink{Varadarajan04}{Varadarajan 04, section 5.3}). We write $q\colon v \mapsto \langle v ,v \rangle$ for the corresponding [[quadratic form]]. \begin{defn} \label{}\hypertarget{}{} The \emph{[[Clifford algebra]]} $CL(V,q)$ of a quadratic vector space, def. \ref{QuadraticVectorSpace}, is the [[associative algebra]] over $k$ which is the [[quotient]] \begin{displaymath} Cl(V,q) \coloneqq T(V)/I(V,q) \end{displaymath} of the [[tensor algebra]] of $V$ by the ideal generated by the elements $v \otimes v - q(v)$. \end{defn} Since the [[tensor algebra]] $T(V)$ is naturally $\mathbb{Z}$-graded, the Clifford algebra $Cl(V,q)$ is naturally $\mathbb{Z}/2\mathbb{Z}$-graded. Let $(\mathbb{R}^n, q = {\vert -\vert})$ be the $n$-dimensional [[Cartesian space]] with its canonical [[scalar product]]. Write $Cl^\mathbb{C}(\mathbb{R}^n)$ for the [[complexification]] of its [[Clifford algebra]]. \begin{prop} \label{}\hypertarget{}{} There exists a unique [[complex number|complex]] [[representation]] \begin{displaymath} Cl^{\mathbb{C}}(\mathbb{R}^n) \longrightarrow End(\Delta_n) \end{displaymath} of the algebra $Cl^\mathbb{C}(\mathbb{R}^n)$ of smallest [[dimension]] \begin{displaymath} dim_{\mathbb{C}}(\Delta_n) = 2^{[n/2]} \,. \end{displaymath} \end{prop} \begin{defn} \label{SpinGroup}\hypertarget{SpinGroup}{} The [[Pin group]] $Pin(V;q)$ of a quadratic vector space, def. \ref{QuadraticVectorSpace}, is the [[subgroup]] of the [[group of units]] in the [[Clifford algebra]] $Cl(V,q)$ \begin{displaymath} Pin(V,q) \hookrightarrow GL_1(Cl(V,q)) \end{displaymath} on those elements which are multiples $v_1 \cdots v_{n}$ of elements $v_i \in V$ with $q(v_i) = 1$. The [[Spin group]] $Spin(V,q)$ is the further [[subgroup]] of $Pin(V;q)$ on those elements which are even number multiples $v_1 \cdots v_{2k}$ of elements $v_i \in V$ with $q(v_i) = 1$. Specifically, ``the'' Spin group is \begin{displaymath} Spin(n) \coloneqq Spin(\mathbb{R}^n) \,. \end{displaymath} \end{defn} A \emph{[[spin representation]]} is a [[linear representation]] of the spin group, def. \ref{SpinGroup}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} By definition the spin group sits in a [[short exact sequence]] of groups \begin{displaymath} \mathbb{Z}_2 \to Spin \to SO \,. \end{displaymath} \hypertarget{relation_to_whitehead_tower_of_orthogonal_group}{}\subsubsection*{{Relation to Whitehead tower of orthogonal group}}\label{relation_to_whitehead_tower_of_orthogonal_group} The spin group is one element in the [[Whitehead tower]] of $O(n)$, which starts out like \begin{displaymath} \cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,. \end{displaymath} The [[homotopy group]]s of $O(n)$ are for $k \in \mathbb{N}$ and for sufficiently large $n$ \begin{displaymath} \itexarray{ \pi_{8k+0}(O) & = \mathbb{Z}_2 \\ \pi_{8k+1}(O) & = \mathbb{Z}_2 \\ \pi_{8k+2}(O) & = 0 \\ \pi_{8k+3}(O) & = \mathbb{Z} \\ \pi_{8k+4}(O) & = 0 \\ \pi_{8k+5}(O) & = 0 \\ \pi_{8k+6}(O) & = 0 \\ \pi_{8k+7}(O) & = \mathbb{Z} } \,. \end{displaymath} By [[Whitehead tower|co-killing]] these groups step by step one gets \begin{displaymath} \itexarray{ cokill\, this &&&& to\,get \\ \\ \pi_{0}(O) & = \mathbb{Z}_2 &&& SO \\ \pi_{1}(O) & = \mathbb{Z}_2 &&& Spin \\ \pi_{2}(O) & = 0 \\ \pi_{3}(O) & = \mathbb{Z} &&& String \\ \pi_{4}(O) & = 0 \\ \pi_{5}(O) & = 0 \\ \pi_{6}(O) & = 0 \\ \pi_{7}(O) & = \mathbb{Z} &&& Fivebrane } \,. \end{displaymath} Via the [[J-homomorphism]] this is related to the [[stable homotopy groups of spheres]]: [[!include image of J -- table]] \hypertarget{ExceptionalIsomorphisms}{}\subsubsection*{{Exceptional isomorphisms}}\label{ExceptionalIsomorphisms} In low [[dimensions]] the [[spin groups]] happens to be [[isomorphism|isomorphic]] to various other [[classical Lie groups]]. One speaks of \emph{[[exceptional isomorphisms]]} or \emph{[[sporadic isomorphisms]]}. See for instance (\hyperlink{Garrett13}{Garrett 13}). See also \emph{[[division algebra and supersymmetry]]}. In the following $Sp(n)$ denotes the [[quaternionic unitary group]] in [[quaternion|quaternionic]] [[dimension]] $n$. We have \begin{itemize}% \item in [[Euclidean geometry|Euclidean]] signature \begin{itemize}% \item $Spin(1) \simeq O(1)$ \item [[Spin(2)]] $\simeq U(1) \simeq SO(2) \simeq S^1$ ([[SO(2)]], the [[circle group]], see also at \emph{[[real Hopf fibration]]}) the projection $Spin(2)\to SO(2)$ corresponds to $S^1\stackrel{\cdot 2}{\longrightarrow} S^1$, see also at \emph{[[Theta characteristic]]} \item [[Spin(3)]] $\simeq Sp(1) \simeq SU(2) \simeq S^3$ (the [[special unitary group]] [[SU(2)]] the inclusion $Spin(2) \hookrightarrow Spin(3)$ corresponds to the canonical $S^1 \hookrightarrow S^3$ (see e.g. \hyperlink{GorbunovRay92}{Gorbunov-Ray 92}) \item [[Spin(4)]] $\simeq Sp(1)\times Sp(1) \simeq S^3 \times S^3$ this is given by identifying $\mathbb{R}^4 \simeq \mathbb{H}$ with the [[quaternions]] and $SU(2) \simeq S^3$ with the group of unit quternions. Then left and right quaternion multiplication gives a [[homomorphism]] \begin{displaymath} SU(2) \times SU(2) \longrightarrow SO(4) \end{displaymath} \begin{displaymath} (g,h) \mapsto ( x \mapsto \; g^{-1} x h ) \end{displaymath} which is a [[double cover]] and hence exhibits the isomorphism. In particular therefore the inclusion $Spin(3) \hookrightarrow Spin(4)$ corresponds to the [[diagonal]] $S^3 \hookrightarrow S^3 \times S^3$. At the level of [[Lie algebras]] $\mathfrak{so}(4) \simeq \wedge^2 \mathbb{R}^4$ and the $\pm 1$-[[eigenspaces]] of the [[Hodge star operator]] $\star \colon \Wedge^2 \mathbb{R}^4 \to \mathbb{R}^4$ gives the [[direct sum]] decomposition $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2) \simeq \mathfrak{so}(3) \oplus \mathfrak{so}(3)$ \item [[Spin(5)]] $\simeq Sp(2)$ (an indirect consequence of [[triality]], see e.g. \hyperlink{CadekVanzura97}{Čadek-Vanžura 97}) \item [[Spin(6)]] $\simeq SU(4)$ (the [[special unitary group]] \href{special+unitary+group#SU4}{SU(4)}) \end{itemize} \item in [[Lorentz group|Lorentzian]] signature \begin{itemize}% \item $Spin(1,1) \simeq GL(1,\mathbb{R})$ \item $Spin(2,1) \simeq SL(2, \mathbb{R})$ -- 2d [[special linear group]] of [[real numbers]] \item $Spin(3,1) \simeq SL(2,\mathbb{C})$ -- 2d [[special linear group]] of [[complex numbers]] \item $Spin(4,1) \simeq Sp(1,1)$ \item $Spin(5,1) \simeq SL(2,\mathbb{H})$ -- 2d [[special linear group]] of [[quaternions]] \item $Spin(9,1) \simeq_{in\;some\;sense} SL(2, \mathbb{O})$ -- 2d [[special linear group]] of [[octonions]] \end{itemize} \item in [[anti de Sitter group|anti de Sitter]] signature \begin{itemize}% \item $Spin(2,2) \simeq SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ \item $Spin(3,2) \simeq Sp(4,\mathbb{R})$ \item $Spin(4,2) \simeq SU(2,2)$ \end{itemize} \item in mixed signature \begin{itemize}% \item $Spin(3,3) \simeq SL(4,\mathbb{R})$ (\hyperlink{Garrett13}{Garrett 13 (2.12)}) \end{itemize} \end{itemize} Beyond these dimensions there are still some interesting identifications, but the situation becomes much more involved. [[!include exceptional spinors and division algebras -- table]] \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{spin_geometry}{}\subsubsection*{{Spin geometry}}\label{spin_geometry} See [[spin geometry]] \hypertarget{in_physics}{}\subsubsection*{{In physics}}\label{in_physics} The name arises due to the requirement that the structure group of the [[tangent bundle]] of [[spacetime]] lifts to $Spin(n)$ so as to `define particles with spin'\ldots{} (Someone more awake and focused please put this into proper words!) See [[spin structure]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spinor]], [[spin representation]], [[spinor bundle]] \end{itemize} The [[Whitehead tower]] of the [[orthogonal group]] looks like $\cdots \to$ [[fivebrane group]] $\to$ [[string group]] $\to$ \textbf{spin group} $\to$ [[special orthogonal group]] $\to$ [[orthogonal group]]. Another extension of $SO$ is the [[spin{\tt \symbol{94}}c group]]. \begin{itemize}% \item [[semi-spin group]] \end{itemize} [[!include table of orthogonal groups and related]] \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook reference is \begin{itemize}% \item [[H. Blaine Lawson]], [[Marie-Louise Michelsohn]], chapter I, section 2 of \emph{[[Spin geometry]]}, Princeton University Press (1989) \end{itemize} See also \begin{itemize}% \item [[Veeravalli Varadarajan]], section 7 of \emph{[[Supersymmetry for mathematicians]]: An introduction}, Courant lecture notes in mathematics, American Mathematical Society, Providence, R.I (2004) \item wikipedia \emph{\href{http://en.wikipedia.org/wiki/Spin_group}{Spin group}} \end{itemize} Examples of sporadic (exceptional) spin group isomorphisms incarnated as [[isogenies]] onto [[orthogonal groups]] are discussed in \begin{itemize}% \item [[Paul Garrett]], \emph{Sporadic isogenies to orthogonal groups}, July 2013 (\href{http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf}{pdf}) \item Vassily Gorbunov, Nigel Ray, \emph{Orientations of $Spin$ Bundles and Symplectic Cobordism}, Publ. RIMS, Kyoto Univ. 28 (1992), 39-55 ([[GorbunovRaySpinBundles.pdf:file]]) \end{itemize} The exceptional isomorphism $Spin(5) \simeq Sp(2)$ is discussed via [[triality]] in \begin{itemize}% \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{On $Sp(2)$ and $Sp(2) \cdot Sp(1)$-structures in 8-dimensional vector bundles}, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (\href{https://www.jstor.org/stable/43737249}{jstor:43737249}) \end{itemize} Discussion of the [[cohomology]] of the [[classifying space]] $B Spin$ includes \begin{itemize}% \item E. Thomas, \emph{On the cohomology groups of the classifying space for the stable spinor groups}, Bol. Soc. Mat. Mexicana (2) 7 (1962) 57-69. \item [[Harsh Pittie]], \emph{The integral homology and cohomology rings of SO(n) and Spin(n)}, Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105--153 () \end{itemize} [[!redirects spin groups]] [[!redirects Spin group]] [[!redirects Spin groups]] [[!redirects Spin]] [[!redirects Spin(n)]] [[!redirects spin-group]] [[!redirects spin groups]] [[!redirects spin-groups]] \end{document}