\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{split coequalizer} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{split_coequalizers}{}\section*{{Split coequalizers}}\label{split_coequalizers} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{coequalizers_and_absolute_coequalizers}{Coequalizers and absolute coequalizers}\dotfill \pageref*{coequalizers_and_absolute_coequalizers} \linebreak \noindent\hyperlink{contractible_pairs}{Contractible pairs}\dotfill \pageref*{contractible_pairs} \linebreak \noindent\hyperlink{split_epimorphisms}{Split epimorphisms}\dotfill \pageref*{split_epimorphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{BeckCoequalizerForAlgebrasOverAMonad}{Beck coequalizer for algebras over a monad}\dotfill \pageref*{BeckCoequalizerForAlgebrasOverAMonad} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For purposes of this page, a [[fork]] (some might say a ``cofork'') in a [[category]] $C$ is a diagram of the form \begin{displaymath} A \;\underoverset{f}{g}{\rightrightarrows}\; B \overset{e}{\rightarrow} C \end{displaymath} such that $e f = e g$. A \textbf{split coequalizer} is a fork together with morphisms $s\colon C\to B$ and $t\colon B\to A$ as below $\backslash$begin\{center\}$\backslash$begin\{tikzcd\} A $\backslash$arr,shift left,``f'' $\backslash$arr,shift right,``g''' \& B $\backslash$arr,``e'' $\backslash$arl,bend right=40,``t''' \& C $\backslash$arl,bend right=40,``s''' $\backslash$end\{tikzcd\}$\backslash$end\{center\} such that $e s = 1_C$, $s e = g t$, and $f t = 1_B$. This is equivalent to saying that the morphism $(f,e)\colon g \to e$ has a [[section]] in the [[arrow category]] of $C$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \hypertarget{coequalizers_and_absolute_coequalizers}{}\subsubsection*{{Coequalizers and absolute coequalizers}}\label{coequalizers_and_absolute_coequalizers} The name ``split coequalizer'' is appropriate, because in any split coequalizer diagram, the morphism $e$ is necessarily a [[coequalizer]] of $f$ and $g$. For given any $h\colon B\to D$ such that $h f = h g$, the composite $h s$ provides a factorization of $h$ through $e$, since $h s e = h g t = h f t = h$, and such a factorization is unique since $e$ is (split) [[epimorphism|epic]]. In fact, a split coequalizer is not just a coequalizer but an [[absolute coequalizer]]: one preserved by all [[functors]]. \hypertarget{contractible_pairs}{}\subsubsection*{{Contractible pairs}}\label{contractible_pairs} On the other hand, suppose we are given only $f,g\colon A\to B$ and $t\colon B\to A$ such that $f t = 1_B$ and $g t f = g t g$ (which is certainly the case in any split coequalizer, since $g t f = s e f = s e g = g t g$). Such a situation is sometimes called a \textbf{contractible pair}. In this case, any coequalizer of $f$ and $g$ is split, for if $e\colon B\to C$ is a coequalizer of $f$ and $g$, then the equation $g t f = g t g$ implies, by the universal property of $e$, a unique morphism $s\colon C\to B$ such that $s e = g t$, whence $e s e = e g t = e f t = e$ and so $e s = 1_C$ since $e$ is epic. Similarly, if $e\colon B\to C$ [[split idempotent|splits]] the [[idempotent]] $g t$ with section $s\colon C\to B$, so that $e s = 1$ and $s e = g t$, then we have \begin{displaymath} e g = e s e g = e g t g = e g t f = e s e f = e f \end{displaymath} and the other identities are obvious; thus $e$ is a split coequalizer of $f$ and $g$. \hypertarget{split_epimorphisms}{}\subsubsection*{{Split epimorphisms}}\label{split_epimorphisms} Dually, if $e\colon B\to C$ is a [[split epimorphism]], with a splitting $s\colon C\to B$, say, then $e$ is a split coequalizer of $B \;\underoverset{1}{s e}{\rightrightarrows}\; B$, the morphism $t$ being the identity. Moreover, $e$ is also the split coequalizer of its [[kernel pair]], if the latter exists. For if $A \;\underoverset{f}{g}{\rightrightarrows}\; B$ is this kernel pair, then the two maps $s e, 1_B \colon B\to B$ satisfy $e \circ s e = e \circ 1_B$, and hence induce a map $t\colon B\to A$ such that $f t = 1_B$ and $g t = s e$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{BeckCoequalizerForAlgebrasOverAMonad}{}\subsubsection*{{Beck coequalizer for algebras over a monad}}\label{BeckCoequalizerForAlgebrasOverAMonad} The ``ur-example'' of a split coequalizer is the following. Let $A$ be an [[algebra for a monad|algebra]] for the [[monad]] $T$ on the category $C$, with structure map $a\colon T A \to A$. Then the diagram \begin{displaymath} T^2 A \;\underoverset{\mu_A }{T a}{\rightrightarrows}\; T A \overset{a}{\rightarrow} A\, , \end{displaymath} called the [[canonical presentation]] of the algebra $(A,a)$, is a split coequalizer in $C$ (and a [[reflexive coequalizer]] in the [[Eilenberg-Moore category|category of]] $T$-algebras). The splittings are given by $s = \eta_A \colon A \to T A$ and $t = \eta_{T A} \colon T A \to T^2 A$. (Here $\mu$ and $\eta$ are the multiplication and unit of the monad $T$.) This split coequalizer figures prominently in Beck's [[monadicity theorem]], whence also called the \emph{[[Beck coequalizer]]}. See also at \emph{\href{Eilenberg-Moore+category#AsColimitCompletionOfKleisliCategory}{Eilenberg-Moore category -- As a colimit completion of the Kleisli category}}. [[!redirects split coequalizer]] [[!redirects split coequalizers]] [[!redirects split coequaliser]] [[!redirects split coequalisers]] [[!redirects contractible pair]] [[!redirects contractible pairs]] \end{document}