\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{split exact sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{InAbelianCategory}{In an abelian category}\dotfill \pageref*{InAbelianCategory} \linebreak \noindent\hyperlink{in_a_semiabelian_category}{In a semi-abelian category}\dotfill \pageref*{in_a_semiabelian_category} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToChainHomotopy}{Relation to chain homotopy}\dotfill \pageref*{RelationToChainHomotopy} \linebreak \noindent\hyperlink{OfVectorSpaces}{Of free modules and vector spaces}\dotfill \pageref*{OfVectorSpaces} \linebreak \noindent\hyperlink{InvolvingInjectiveObjects}{Involving injective/projective objects}\dotfill \pageref*{InvolvingInjectiveObjects} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{InAbelianCategory}{}\subsubsection*{{In an abelian category}}\label{InAbelianCategory} Let $\mathcal{A}$ be an [[abelian category]]. \begin{defn} \label{SplitnessInAbelianCategory}\hypertarget{SplitnessInAbelianCategory}{} A [[short exact sequence]] $0\to A \stackrel{i}{\to} B \stackrel{p}{\to} C\to 0$ in $\mathcal{A}$ is called \textbf{split} if either of the following equivalent conditions hold \begin{enumerate}% \item There exists a [[section]] of $p$, hence a morphism $s \colon C\to B$ such that $p \circ s = id_C$. \item There exists a [[retract]] of $i$, hence a morphism $r \colon B\to A$ such that $r \circ i = id_A$. \item There exists an [[isomorphism]] of sequences with the sequence \begin{displaymath} 0\to A\to A\oplus C\to C\to 0 \end{displaymath} given by the [[direct sum]] and its canonical injection/projection morphisms. \end{enumerate} \end{defn} \begin{lemma} \label{SplittingLemma}\hypertarget{SplittingLemma}{} \textbf{(splitting lemma)} The three conditions in def. \ref{SplitnessInAbelianCategory} are indeed [[equivalence|equivalent]]. \end{lemma} \begin{proof} It is clear that the third condition implies the first two: take the section/retract to be given by the canonical injection/projection maps that come with a [[direct sum]]. Conversely, suppose we have a retract $r \colon B \to A$ of $i \colon A \to B$. Write $P \colon B \stackrel{r}{\to} A \stackrel{i}{\to} B$ for the corresponding [[idempotent]]. Then every element $b \in B$ can be decomposed as $b = (b - P(b)) + P(b)$ hence with $b - P(b) \in ker(r)$ and $P(b) \in im(i)$. Moreover this decomposition is unique since if $b = i(a)$ while at the same time $r(b) = 0$ then $0 = r(i(a)) = a$. This shows that $B \simeq im(i) \oplus ker(r)$ is a [[direct sum]] and that $i \colon A \to B$ is the canonical inclusion of $im(i)$. By exactness it then follows that $ker(r) \simeq im(p)$ and hence that $B \simeq A \oplus C$ with the canonical inclusion and projection. The implication that the second condition also implies the third is formally dual to this argument. \end{proof} \hypertarget{in_a_semiabelian_category}{}\subsubsection*{{In a semi-abelian category}}\label{in_a_semiabelian_category} There is a nonabelian analog of split exact sequences in [[semiabelian categories]]. See there. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToChainHomotopy}{}\subsubsection*{{Relation to chain homotopy}}\label{RelationToChainHomotopy} \begin{prop} \label{}\hypertarget{}{} A [[long exact sequence]] $C_\bullet$ is \emph{split exact} precisely if the [[weak homotopy equivalence]] from the 0-chain complex, namely the [[quasi-isomorphism]] $0 \to C_\bullet$ is actually a [[chain homotopy]] [[homotopy equivalence|equivalence]], in that the [[identity]] on $C_\bullet$ has a [[null homotopy]]. \end{prop} \hypertarget{OfVectorSpaces}{}\subsubsection*{{Of free modules and vector spaces}}\label{OfVectorSpaces} \begin{prop} \label{}\hypertarget{}{} Every exact sequence of [[free abelian groups]] is split, assuming the [[axiom of choice]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} Every exact sequence of [[free modules]] which is bounded below is split. \end{prop} Let $k$ be a [[field]] and denote by $\mathcal{A} \coloneqq k$[[Vect]] the [[category]] of [[vector spaces]] over $k$. \begin{cor} \label{}\hypertarget{}{} Every [[short exact sequence]] of vector spaces is split. \end{cor} \hypertarget{InvolvingInjectiveObjects}{}\subsubsection*{{Involving injective/projective objects}}\label{InvolvingInjectiveObjects} \begin{lemma} \label{}\hypertarget{}{} If in a [[short exact sequence]] $0 \to A \to B \to C \to 0$ in an [[abelian category]] the first object $A$ is an [[injective object]] or the last object is a [[projective object]] then the sequence is split exact. \end{lemma} \begin{proof} Consider the first case. The other is formally dual. By the properties of a [[short exact sequence]] the morphism $A \to B$ here is a [[monomorphism]]. By definition of [[injective object]], if $A$ is injective then it has the [[right lifting property]] against [[monomorphisms]] and so there is a morphism $q : B \to A$ that makes the following [[diagram]] [[commuting diagram|commute]]: \begin{displaymath} \itexarray{ A &\stackrel{id_A}{\to}& A \\ \downarrow & \nearrow_{q} \\ B } \,. \end{displaymath} Hence $q$ is a [[retract]] as in def. \ref{SplitnessInAbelianCategory}. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance section 1.4 of \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]} \end{itemize} [[!redirects split sequence]] [[!redirects split exact sequences]] [[!redirects split sequences]] [[!redirects split short exact sequence]] [[!redirects split short exact sequences]] [[!redirects splitting lemma]] \end{document}