\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{split supersymmetry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{mssm}{$G_2$-MSSM}\dotfill \pageref*{mssm} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[particle physics]] [[phenomenology]], the term \emph{split supersymmetry} refers to [[model (physics)|models]] of [[supersymmetry|supersymmetric]] extensions of the [[standard model of particle physics]] ([[MSSM]] or other) whose [[supersymmetry breaking]]-[[scale]] is very high (for instance at [[GUT]]-scale of about $10^{15}$ [[GeV]]), much higher than the [[electroweak symmetry breaking]]-[[scale]] (of about 246 [[GeV]]) hence violating the idea of ``[[naturalness]]'', but such that approximate [[chiral symmetry]] [[protection from quantum corrections|protects]] the [[masses]] of the [[fermion|fermionic]] [[superpartners]]. As a result, in such [[model (physics)|models]] there is a ``split'' of the [[mass]] [[scales]] of the [[superpartner]] [[particles]]: \begin{enumerate}% \item the [[scalar field|scalar]] [[superpartners]] (the [[sfermions]], hence the [[squarks]] and [[sleptons]]) have high [[rest masses]], from tens of [[TeV]] (mass scale of the [[gravitino]]) up to the [[supersymmetry breaking]]-scale many order of magnitudes higher; \item the fermionic [[superpartners]] ([[gauginos]] and [[higgsino]]) have masses much closer to the [[electroweak symmetry breaking]] scale, at about a few [[TeV]]. \end{enumerate} (see \hyperlink{ArkaniHamedDimopoulosGiudiceRomanino05}{Arkani-Hamed, Dimopoulos, Giudice, Romanino 05, p 2.}) Therefore one speaks of ``split supersymmetry'' (\hyperlink{GiudiceRomanino04}{Giudice-Romanino 04}). Historically, the consideration of split supersymmetry (\hyperlink{ArkaniHamedDimopoulos05}{Arkani-Hamed, Dimopoulos 04}) was in contrast to the folklore of ``[[naturalness]]'' which governed [[supersymmetry]] [[model (physics)|model]]-building. Split supersymmetry was motivated by the observation that many other theoretical problems of low-scale susy models disappear if one does not insist on ``[[naturalness]]''. Indeed, after the [[LHC]] [[experiment]] produced first observational results, susy models exhibiting ``[[naturalness]]'' were ruled out, while only split supersymmetry models remained viable (this as of beginning of 2018). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{mssm}{}\subsubsection*{{$G_2$-MSSM}}\label{mssm} The class of [[model (physics)|physics]] called [[G2-MSSM]] generically exhibits ``slightly'' split supersymmetry. From \hyperlink{Kane17}{Kane 17, p. 43-44 ((5-1)-(5-2))}: \begin{quote}% It is important to understand that there are two measures relevant to understanding supersymmetry breaking, one the scale at which it is broken (about $10^{14}$ [[GeV]] as described above), and the other the resulting [[gravitino]] mass. In the [[KK mechanism|compactified]] [[M-theory]] case the [[gravitino]] mass is calculated, and comes out to be about 40 [[TeV]] (40 000 [[GeV]]). Sometimes even experts confuse these two scales if they are speculating about [[supersymmetry breaking]] without a real theory to calculate. Thus 40 [[TeV]] is the natural scale for [[superpartner]] masses. That is not a surprising number in a theory starting with everything at the [[Planck scale]], but it is surprising if one expects the superpartner masses to be near the particle masses (all well below 1 [[TeV]]). The [[squarks]] and other masses are indeed predicted to be at the [[gravitino]] scale, tens of [[TeV|tera-electronvolts]]. The theory has formulas (‘supergravity formulas’) for all the masses. When one calculates carefully the masses of the superpartners of the [[gauge bosons]] that mediate the [[standard model of particle physics|Standard Model]] forces they turn out to get no contribution from one large source, and the resulting value for the [[superpartners]] of the [[gauge bosons]] ([[gauginos]]) is about 1 [[TeV]], rather than about 40 [[TeV]]. They are the [[gluino]], photino, zino, and wino. The strong force gluino is heavier, about 1.5 [[TeV]] or somewhat more, and the [[electroweak field|electroweak]] ones (photino, zino, wino) are somewhat lighter, about half a [[TeV|tera-electronvolt]]. (\hyperlink{Kane17}{Kane 17, p. 43-44 ((5-1)-(5-2))}) \end{quote} \hypertarget{references}{}\subsection*{{References}}\label{references} The idea originates with \begin{itemize}% \item [[James Wells]], \emph{Implications of Supersymmetry Breaking with a Little Hierarchy between Gauginos and Scalars}, Proceedings of \href{http://www.physics.arizona.edu/susy2003/}{SUSY 2003} (\href{https://arxiv.org/abs/hep-ph/0306127}{arXiv:hep-ph/0306127}) \item [[Nima Arkani-Hamed]], [[Savas Dimopoulos]], \emph{Supersymmetric Unification Without Low Energy Supersymmetry And Signatures for Fine-Tuning at the LHC}, JHEP 0506 (2005) 073 (\href{https://arxiv.org/abs/hep-th/0405159}{arXiv:hep-th/0405159}) \item [[Gian Francesco Giudice]], A. Romanino, \emph{Split Supersymmetry}, Nucl. Phys. B699:65-89,2004; Erratum-ibid.B706:65-89,2005 (\href{https://arxiv.org/abs/hep-ph/0406088}{arXiv:hep-ph/0406088}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Nima Arkani-Hamed]], [[Savas Dimopoulos]], [[Gian Francesco Giudice]], A. Romanino, \emph{Aspects of Split Supersymmetry}, Nucl. Phys. B709:3-46, 2005 (\href{https://arxiv.org/abs/hep-ph/0409232}{arXiv:hep-ph/0409232}) \item Fei Wang, Wenyu Wang, Jin Min Yang, \emph{A split SUSY model from SUSY GUT}, JHEP03(2015)050 (\href{https://arxiv.org/abs/1501.02906}{arXiv:1501.02906}) \end{itemize} Popular discussion of the ``slightly split'' [[G2-MSSM]] is in \begin{itemize}% \item [[Gordon Kane]], \emph{String theory and the real world}, Morgan \& Claypool, 2017 () \end{itemize} Discussion of [[phenomenology]] in view of the observed near-criticality of the [[Higgs field]] [[vacuum stability]]: \begin{itemize}% \item [[Gian Giudice]], [[Alessandro Strumia]], \emph{Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements}, Nuclear Physics B Volume 858, Issue 1, 1 May 2012, Pages 63-83 (\href{https://arxiv.org/abs/1108.6077}{arXiv:1108.6077}) \item Gino Isidori, Andrea Pattori, \emph{On the tuning in the $(m_h, m_t)$ plane: Standard Model criticality vs. High-scale SUSY}, Physics Letters B Volume 782, 10 July 2018, Pages 551-558 (\href{https://arxiv.org/abs/1710.11060}{arXiv:1710.11060}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Split_supersymmetry}{Split supersymmetry}} \end{itemize} \end{document}