\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{split support} \hypertarget{split_supports}{}\section*{{Split supports}}\label{split_supports} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relation_to_axiom_of_choice}{Relation to axiom of choice}\dotfill \pageref*{relation_to_axiom_of_choice} \linebreak \noindent\hyperlink{in_foundations}{In foundations}\dotfill \pageref*{in_foundations} \linebreak \noindent\hyperlink{in_set_theory}{In set theory}\dotfill \pageref*{in_set_theory} \linebreak \noindent\hyperlink{in_homotopy_type_theory}{In (homotopy) type theory}\dotfill \pageref*{in_homotopy_type_theory} \linebreak \noindent\hyperlink{objects_with_split_support}{Objects with split support}\dotfill \pageref*{objects_with_split_support} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall that the \textbf{[[support]]} of an object $X$ of a [[regular category]] (or [[n-category]]) is its [[(-1)-truncation]], i.e. the [[image]] of the map $X\to 1$ to the [[terminal object]]. Let $\Vert X \Vert$ denote its support. We say that $X$ has a \textbf{split support} if the canonical map $X\to {\Vert X \Vert}$ has a [[section]]. Since $\Vert X \Vert$ is a [[subterminal object]], it is equivalent to say that there exists any morphism ${\Vert X \Vert} \to X$. If all objects has split supports, we say that \textbf{supports split} in the ambient category. \hypertarget{relation_to_axiom_of_choice}{}\subsection*{{Relation to axiom of choice}}\label{relation_to_axiom_of_choice} Supports splitting in a category is a weak form of the external [[axiom of choice]] (all regular epis split). In fact, the splitting of supports is exactly the ``difference'' between the external axiom of choice and the \emph{internal} axiom of choice, i.e. \begin{displaymath} EAC \Leftrightarrow (IAC \;\text{ and }\; SS). \end{displaymath} \hypertarget{in_foundations}{}\subsection*{{In foundations}}\label{in_foundations} \hypertarget{in_set_theory}{}\subsubsection*{{In set theory}}\label{in_set_theory} If we assume [[excluded middle]], then supports split in the category [[Set]]. This has little to do with the foundational [[axiom of choice]]; it is more like [[well-pointed category|well-pointedness]]. Note, however, that to say there is a \emph{function} assigning to every $X$ a section of $X\to {\Vert X \Vert}$ is much stronger: such a function is a global [[choice operator]]. In [[constructive mathematics]], however, it may not be true that all supports split in Set; this can fail in the [[internal logic]] of some [[toposes]]. (Note that the ``internal'' version of ``supports split in Set'' in a topos may not be the same as the statement that supports split as an external statement about the topos itself.) See \hyperlink{FourmanScedrov}{(Fourman-Scedrov)} and \hyperlink{KECA}{(KECA)}. Thus, splitting of supports can be regarded as a weaker form of [[excluded middle]]. \hypertarget{in_homotopy_type_theory}{}\subsubsection*{{In (homotopy) type theory}}\label{in_homotopy_type_theory} In [[type theory]] under [[propositions as types]]), where assertions of existence are always witnessed, to say that ``all supports split'' would by default mean that there is a \emph{function} as above, assigning to every $X$ a section of $X\to {\Vert X \Vert}$, and imply the global axiom of choice. To recover the statement which depends only on excluded middle, we need an additional truncation: \begin{displaymath} \prod_{(X:Type)} \Vert ( \Vert X \Vert \to X ) \Vert. \end{displaymath} We might pronounce this version as ``all supports [[mere proposition|merely]] split''. In [[homotopy type theory]], the pure constructive version of ``all supports split'' ($\prod_{(X:Type)} \Vert X \Vert \to X$) is in fact inconsistent: it contradicts the [[univalence axiom]]. As before, the truncated version is true under LEM but may fail otherwise. \hypertarget{objects_with_split_support}{}\paragraph*{{Objects with split support}}\label{objects_with_split_support} Since not all supports split in homotopy type theory, it is interesting to consider whether the support of some particular type is split. For instance, for any $f:A\to B$, the type $qinv(f) \coloneqq \sum_{g:B\to A} (f g = id_B) \times (g f = id_A)$ has split support, since its support can be proven to be equal to the type of coherent equivalence data on $f$. It is shown in \hyperlink{KECA}{(KECA)} that a type in homotopy type theory has split support if and only if it admits a [[steady function|steady]] endomap. Thus, it has merely split support if and only if it merely admits a steady endomap. Some general classes of types can be shown \emph{not} to have split support, at least not uniformly, by arguments similar to the one which shows that not all types have split support. For instance, the identity type $x=_A y$ has split support for all $x,y:A$ if and only if $A$ is an [[h-set]]; this is proven in \hyperlink{KECA}{(KECA)}, and the ``only if'' direction is also a special case of Theorem 7.2.2 of [[the HoTT book]]. Similarly, we have: \begin{utheorem} If the type $steady(f)\coloneqq \prod_{(x,y:A+A)} (f x = f y)$ has split support for every [[endomap]] $f:A+A\to A+A$, then $A$ is an [[h-set]]. \end{utheorem} \begin{proof} Given $a,b:A$ with $\Vert a=b\Vert$, we show $a=b$; this suffices to show that $A$ is a set. Define $g,h : A \to A+A$ to be constant at $inl(a)$ and $inl(b)$ respectively, and $f = [g,h] : A+A \to A+A$. Then \begin{displaymath} steady(f) = ( (A\times A) \to ((a=a) \times (a=b) \times (b=a) \times (b=b)) ) \end{displaymath} Since $\Vert a=b\Vert$, we have $\Vert steady(f)\Vert$. Thus, by assumption, $steady(f)$; hence $a=b$. \end{proof} In particular, not all types of the form $steady(f)$ have split support. Thus, ``steadiness'' is not as well-behaved a notion as being quasi-invertible. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item M. P. Fourman and A. Scedrov. The ``world's simplest axiom of choice'' fails. \emph{Manuscripta Math.}, 38(3):325\{332, 1982. \item [[Nicolai Kraus]], [[Martin Escardo]], [[Thierry Coquand]], [[Thorsten Altenkirch]], \emph{Generalizations of Hedberg's theorem}, in M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 173-188. Springer, Heidelberg 2013. \href{http://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf}{PDF}. (In this paper, types with split support are called ``h-stable'') \end{itemize} [[!redirects split support]] [[!redirects split supports]] [[!redirects supports split]] [[!redirects h-stable type]] [[!redirects h-stable types]] \end{document}