\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{splitting field} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{splitting_fields_of_sets_of_polynomials}{Splitting fields of sets of polynomials}\dotfill \pageref*{splitting_fields_of_sets_of_polynomials} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be a [[field]], and $p \in k[x]$ a [[monic polynomial]] of degree $n$. A \emph{splitting field} for $p$ is a [[field extension]] $i: k \hookrightarrow E$ such that, regarding $p$ as a [[polynomial]] in $E[x]$ by applying the map \begin{displaymath} k[x] \cong k \otimes_k k[x] \stackrel{i \otimes 1}{\to} E \otimes_k k[x] \cong E[x], \end{displaymath} the polynomial factors or ``splits'' as a product of linear factors (possibly repeated): \begin{displaymath} p(x) = (x - r_1)(x - r_2)\ldots (x - r_n) \end{displaymath} with all the [[roots]] $r_i$ lying in $E$, and the smallest subfield of $E$ containing $k$ and these roots is $E$ itself (so that the roots generate $E$: $E = k(r_1, \ldots, r_n)$. More generally, given a set $S \subseteq k[x]$ of monic polynomials, an extension field $E/k$ for which each $p \in S$ splits over $E$, and which as a field is generated over $k$ by the set of accompanying roots, is called a splitting field for $S$. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} The existence of a splitting field for a single polynomial $p \in k[x]$ can be proven by [[induction]] on $n = \deg(p)$. As $k[x]$ is a [[unique factorization domain]], $p$ is a product of irreducible polynomials $p_1 p_2 \ldots p_k$. The [[ideal]] $(p_1)$ is [[maximal ideal|maximal]] and so $E = k[x]/(p_1)$ is an [[finite-dimensional vector space|finite]] [[field extension]] of $k$ where the [[coset]] $r_1 \coloneqq x + (p_1) \in E$ is a [[root]] of $p_1(x) \in E[x]$, and $E = k(r_1)$. Then $q(x) = p(x)/(x - r_1) \in E[x]$ has degree $n-1$, and thus has a splitting field $F$ by induction, whence $q(x)$ splits as $(x - r_2)\ldots (x-r_n)$ in $F[x]$, and then $p(x) = (x - r_1)(x - r_2) \ldots (x - r_n)$ in $F[x]$. Finally we have the generation condition: $F = E(r_2, \ldots, r_n) = k(r_1)(r_2, \ldots, r_n) = k(r_1, r_2, \ldots, r_n).$ What is not clear from this construction is that splitting fields are unique (up to [[isomorphism]]). This is the case however: \begin{theorem} \label{unique}\hypertarget{unique}{} Splitting fields of a polynomial are unique up to (non-unique) isomorphism. \end{theorem} \begin{proof} (After \hyperlink{Con}{Conrad}.) Suppose $E = k(r_1, \ldots, r_n)$ and $E' = k(r_1', \ldots, r_n')$ are two splitting fields of a polynomial $p \in k[x]$. The [[tensor product]] $E \otimes_k E'$ is a [[coproduct]] of $E$ and $E'$ in the category of [[commutative algebras]] over $k$; let $i: E \to E \otimes_k E'$ and $i': E' \to E \otimes_k E'$ be the coproduct [[coprojection|injections]]. Observe that as a $k$-algebra, $E \otimes_k E'$ is generated by the $i(r_j)$ together with the $i'(r_j')$. Now let $m$ be any maximal ideal of $E \otimes_k E'$ (note that $E \otimes_k E'$ is finite-dimensional over $k$, so the existence of $m$ does not involve any choice principles), and consider the composite \begin{displaymath} \phi = (E \stackrel{i}{\to} E \otimes_k E' \stackrel{quot}{\to} E \otimes_k E'/m). \end{displaymath} As is the case for any homomorphism between fields, this composite $\phi$ is an [[injective map]]. Moreover, letting $\rho_j$ denote the coset $i(r_j) + m$ and $\rho_j'$ the coset $i'(r_j') + m$, the polynomial $p(x)$ splits over the field $E \otimes_k E'/m$ as \begin{displaymath} \prod_j (x - \rho_j) = \prod_k (x - \rho_k') \end{displaymath} and so by [[unique factorization domain|unique factorization]] of polynomials, for each $\rho_k'$ there is a $\rho_j = \phi(r_j)$ with $\rho_k' = \rho_j$. This means the $\phi(r_j)$ exhaust the generators $\rho_j, \rho_k'$ of $E \otimes_k E'/m$. In other words, $\phi$ is also surjective and provides an isomorphism $E \cong E \otimes_k E'/m$. By symmetry we also have an isomorphism $E' \cong E \otimes_k E'/m$, and thus $E \cong E'$. \end{proof} \hypertarget{splitting_fields_of_sets_of_polynomials}{}\subsubsection*{{Splitting fields of sets of polynomials}}\label{splitting_fields_of_sets_of_polynomials} A splitting field for a finite set of polynomials $\{p_1, \ldots, p_k\}$ is just a splitting field of the product $p_1 p_2 \ldots p_k$. Now let $S \subseteq k[x]$ be an arbitrary set of monic polynomials. For each $p \in S$, let $n_p$ denote the degree of $p$, and let us introduce a set of indeterminates $X_p = \{x_{p, 1}, \ldots, x_{p, n_p}\}$. Let $X$ be the coproduct $\sum_{p \in S} X_p$, and form the [[polynomial|polynomial algebra]] $R = k[X]$. For each $p \in S$ let us write \begin{displaymath} p(t) - \prod_{i = 1}^{n_p} (t - x_{p, i}) = \sum_{j = 0}^{n_p - 1} s_{p, j} t^j \end{displaymath} for some elements $s_{p, j} \in R$. We claim that the set $\Sigma$ of all $s_{p, j}$ with $p$ ranging over $S$ generates a proper ideal in $R$. For given an $R$-linear combination $g = g_1 s_1 + \ldots + g_k s_k$ with $s_i \in \Sigma$, where $s_i$ is associated with a polynomial $p_i$, let $E$ be the splitting field of $p = p_1 \ldots p_k$, and define a homomorphism $k[X] \to E$ that sends distinct elements of the form $x = x_{p_i, j}$ to distinct roots $r_j$ of $p_i$, and otherwise sends $x = x_{f, j}$ with $f \notin \{p_1, \ldots, p_k\}$ to $0$. Then $g$ is sent to $0$ in $E$, hence $g$ cannot be $1$. Let $\mathfrak{p}$ be a [[prime ideal]] containing the ideal generated by $\Sigma$; the existence of such $\mathfrak{p}$ is guaranteed under the [[ultrafilter principle]]. The ring $R/\mathfrak{p}$ is an [[integral domain]]; by construction every $p \in S$ splits over $R/\mathfrak{p}$ and the roots of such $p$ generate $R/\mathfrak{p}$ as a $k$-algebra. These roots thus generate its [[field of fractions]] $F$ as a field and $F$ is therefore a splitting field for $S$. In particular, taking $S$ to be the set of all monic polynomials in $k[x]$, this gives an efficient construction of the [[algebraic closure]] of $k$ that invokes not the full strength of the [[axiom of choice]] (in the form of [[Zorn's lemma]]), but only of the weaker [[ultrafilter principle]]. \begin{theorem} \label{}\hypertarget{}{} Any two splitting fields of a given set $S$ of polynomials are isomorphic. \end{theorem} Again we prove this only under the assumption of the [[ultrafilter principle]], and not under the assumption of full [[axiom of choice]]. \begin{proof} (After \hyperlink{AC}{Caicedo}.) Let $E, F$ be splitting fields for $S$; without loss of generality we may suppose $S$ is closed under multiplication of polynomials. For $p \in S$ let $E_p, F_p$ denote the corresponding subfields obtained by adjoining all roots of $p$ that occur in $E, F$ to the ground field $k$. Any isomorphism $E \to F$ restricts to an isomorphism $E_p \to F_p$. Notice that the $E_p$ form a directed system of fields, with an inclusion morphism $E_p \to E_q$ if $p$ divides $q$, and $E$ is the [[colimit]] of the $E_p$ over this directed system. We are required to show that the set of isomorphisms $Iso(E, F)$ is nonempty; we have restriction maps $Iso(E, F) \to Iso(E_p, F_p)$ which exhibit $Iso(E, F)$ as the [[inverse limit]] of $Iso(E_p, F_p)$ over the corresponding system, with transition maps $Res_{p q}: Iso(E_q, F_q) \to Iso(E_p, F_p)$ for $p|q$ also given by restriction. So we are required to show that this inverse limit is [[inhabited set|inhabited]]. By Theorem \ref{unique}, the set of isomorphisms $Iso(E_p, F_p)$ is inhabited, and it is also [[finite set|finite]] (being a [[torsor]] of the group $Aut(E_p)$ which has cardinality at most $n!$ where $n$ is the number of roots). It can then be proven from the [[ultrafilter theorem]] that $\Phi = \prod_{p \in S} Iso(E_p, F_p)$ is nonempty; see \href{/nlab/show/compactness+theorem#surj}{here} for a proof. Similarly, the subset \begin{displaymath} \Phi_{p q} \coloneqq \{\phi = (\phi_p)_{p \in S} \in \Phi: Res_{p q}(\phi_q) = \phi_p\} \end{displaymath} is also nonempty, as is any finite intersection of such subsets $\Phi_{p q}$ (which actually is another $\Phi_{p' q'}$, by considering the product of $p$`s and $q$'s). Now $\Phi$ topologized as a product of finite discrete spaces is a [[compact Hausdorff space]]; this version of the [[Tychonoff theorem]] also follows from the ultrafilter theorem. We conclude from compactness that the full intersection $\bigcap_{p|q} \Phi_{p q}$ is inhabited. But this intersection is just the inverse limit which is $Iso(E, F)$, which concludes the proof. \end{proof} An alternative proof based on a similar pattern of reasoning, but more explicitly in the language of [[model theory]] and the [[compactness theorem]], was given by \hyperlink{JDH}{Joel David Hamkins}, in an answer following Caicedo's at MathOverflow. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Bernhard Banaschewski, \emph{Algebraic closure without choice}, Mathematical Logic Quarterly, Vol. 38 Issue 1 (1992), 383--385. (doi: 10.1002/malq.19920380136, \href{http://onlinelibrary.wiley.com/doi/10.1002/malq.19920380136/pdf}{paywall}) \end{itemize} \begin{itemize}% \item Keith Conrad, \emph{Isomorphisms of Splitting Fields}, Galois theory notes (\href{http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/splittingisom.pdf}{pdf}). \end{itemize} \begin{itemize}% \item Andres Caicedo (http://mathoverflow.net/users/6085/andres-caicedo), \emph{Is the statement that every field has an algebraic closure known to be equivalent to the ultrafilter lemma?}, URL (version: 2010-11-19): \href{http://mathoverflow.net/q/46568}{http://mathoverflow.net/q/46568} \end{itemize} \begin{itemize}% \item Joel David Hamkins (http://mathoverflow.net/users/1946/joel-david-hamkins), \emph{Is the statement that every field has an algebraic closure known to be equivalent to the ultrafilter lemma?}, URL (version: 2010-11-20): \href{http://mathoverflow.net/q/46729}{http://mathoverflow.net/q/46729} \end{itemize} \end{document}