\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{splitting principle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{SplittingPrinciple}{Idea}\dotfill \pageref*{SplittingPrinciple} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{ComplexVectorBundleAndTheirChernRoots}{Complex vectors bundles and their Chern roots}\dotfill \pageref*{ComplexVectorBundleAndTheirChernRoots} \linebreak \noindent\hyperlink{linear_representations_and_brauer_induction}{Linear representations and Brauer induction}\dotfill \pageref*{linear_representations_and_brauer_induction} \linebreak \noindent\hyperlink{RealVectorBundles}{Real vector bundles}\dotfill \pageref*{RealVectorBundles} \linebreak \noindent\hyperlink{genera_and_hirzebruch_characteristic_series}{Genera and Hirzebruch characteristic series}\dotfill \pageref*{genera_and_hirzebruch_characteristic_series} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{SplittingPrinciple}{}\subsection*{{Idea}}\label{SplittingPrinciple} In [[algebraic topology]], a \emph{splitting principle} for a [[classifying space]] $B G$ for some [[topological group]] $G$ ([[delooping]] of some [[∞-group]] $G$) is a map from a [[torus]]-classifying space \begin{displaymath} B (T^n) \overset{f}{\longrightarrow} B G \end{displaymath} such that the induced pullback of [[cohomology rings]] is an [[injective function]] \begin{displaymath} f^\ast \;\colon\; H^\bullet(B G) \hookrightarrow H^\bullet(B T^n) \,, \end{displaymath} hence allowing to view the cohomology of $G$-[[principal ∞-bundles]] in terms of that of plain [[torus]]-[[principal bundles]]. In particular for $G$ a classical [[compact Lie group]] such as the [[unitary group]], the splitting principle holds and allows to express [[Chern classes]] of [[complex vector bundles]] as algebraic expressions in just [[first Chern classes]] of [[complex line bundles]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Let $G$ be a [[connected topological space|connected]] [[compact Lie group]] and write $U(1)^n \simeq T \stackrel{i}{\hookrightarrow} G$ for a [[maximal torus]]. Let $X$ be a [[connected topological space]] and $P \to X$ a $G$-[[principal bundle]] over $X$ [[classifying space|classified]] by a map $g \colon X \to B G$. Then consider the [[coset space]] $G/T$ and the $G/T$-[[fiber bundle]] $Y\to X$ [[associated bundle|associated]] to $P$, this is equivalently the [[homotopy pullback]] in the diagram \begin{displaymath} \itexarray{ Y &\stackrel{(g_1,\cdots, g_n)}{\longrightarrow}& B T & \simeq B U(1)^n \\ \downarrow^{\mathrlap{p}} && \downarrow^{\mathrlap{B i}} \\ X &\stackrel{g}{\longrightarrow}& B G } \,. \end{displaymath} This diagram shows that the pullback of the $G$-principal bundle $P \to X$ along $p$ to $Y$ is equivalently a $T$-principal bundle splitting as [[circle group]]-principal bundles classified by $(g_1, \cdots, g_n)$. That this is a useful splitting is the content of: \begin{theorem} \label{GeneralizedSplittingPrinciple}\hypertarget{GeneralizedSplittingPrinciple}{} \textbf{(generalized splitting principle)} Let $R$ be a [[commutative ring]] in which a [[prime number]] $p$ is a [[unit]] if $H_\bullet(B G,\mathbb{Z})$ has a $p$-[[torsion subgroup]]. Then \begin{enumerate}% \item The $H^\bullet(B G,R)$-module $H^\bullet(B T, R)$ (via $B i^\ast$) is [[free module|free]] on the cohomology of $G/T$: \begin{displaymath} H^\bullet(B T,R)\simeq H^\bullet(B G,R) \otimes H^\bullet(G/T, R) \,; \end{displaymath} \item Analogously there is an isomorphism \begin{displaymath} H^\bullet(Y,R) \simeq H^\bullet(X,R)\otimes H^\bullet(G/T,R) \end{displaymath} and hence $p^\ast$ is the canonical inclusion (and hence in particular is an [[injection]]) \begin{displaymath} p^\ast \;\colon\; H^\bullet(X,R)\hookrightarrow H^\bullet(Y,R) \,. \end{displaymath} \end{enumerate} \end{theorem} In this general form this is due to (\hyperlink{May}{May}). \begin{theorem} \label{}\hypertarget{}{} Since the elements \begin{displaymath} c \in H^\bullet(B G,R) \end{displaymath} are the [[universal characteristic classes]] of $G$-principal bundles with [[coefficients]] in $R$ (hence by [[Chern-Weil theory]] the [[invariant polynomials]] of the [[Lie algebra]] $\mathfrak{g}$ if $R$ has [[characteristic]]-0), theorem \ref{GeneralizedSplittingPrinciple} gives the following way to express the characteristic classes of $G$-principal bundles on $X$ by [[tuples]] \begin{displaymath} (c_1^1, \cdots, c_1^n) \coloneqq (B i)^\ast c \end{displaymath} of characteristic classes -- hence [[first Chern class|first Chern classes]] -- of just circle bundles ([[line bundles]]): \begin{displaymath} p^\ast (c(P)) \simeq (g_1^\ast c_1^1, \cdots, g_n^\ast c_1^n) \,. \end{displaymath} (Since $p^\ast$ is injective, this is a genuine characterization of $c(P)$). \end{theorem} \begin{remark} \label{InjectivityOfPullbackInCohomologyToBT}\hypertarget{InjectivityOfPullbackInCohomologyToBT}{} One way to see that $B i^*\colon H^*(B G) \to H^*(B T)$ is injective is by using [[Chern-Weil theory]] to recognise that this map is just $Sym^{\ast} \mathfrak{g}^{\vee} \to Sym^{\ast} \mathfrak{t}^{\vee}$ for $G$ a compact [[Lie group]]. This tells us firstly that these cohomology rings are particularly nice. One can define a [[Becker-Gottlieb transfer|transfer map]] $\tau\colon H^*(B T) \to H^*(B G)$ as in \href{http://mathoverflow.net/questions/61784/cohomology-of-bg-g-compact-lie-group/61943#61943}{this MO answer}, and then show, following (\hyperlink{Dupont78}{Dupont 1978}, chapter 8), that $\tau\circ B i^*\colon H^*(B G)\to H^*(B G)$ is multiplication by the [[Euler class]] $\chi(G/T)$. Thus if $\chi(G/T) \gt 0$ then $\tau\circ B i^*$ hence $B i^*$ is injective. One can calculate $\chi(G/T) = | N(T)/T |$, where $N(T)/T =: W_T$ is the [[Weyl group]] of the maximal torus $T$, using a [[Lefschetz trace formula|Lefshetz fixed point]]-argument, giving the result. \end{remark} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{ComplexVectorBundleAndTheirChernRoots}{}\subsubsection*{{Complex vectors bundles and their Chern roots}}\label{ComplexVectorBundleAndTheirChernRoots} For $G = U(n)$ the [[unitary group]], the [[universal characteristic classes]] are the [[Chern classes]] $c_k \in H^\bullet(B U(n), \mathbb{Z})$. By the discussion at \emph{\href{Chern+class#SplittingPrinciple}{Chern class -- Properties -- Splitting principle and Chern roots}. the universal splitting principle here says that} \begin{displaymath} (B i)^\ast(\sum_k c_k) = (1 + x_1) \cdots (1+ x_n) \,, \end{displaymath} where the $x_i \in H^\bullet(B U(1)^n , \mathbb{Z})$ are the universal characteristic classes of the [[maximal torus]], hence are $n$ incarnations of the universal [[first Chern class]] (equivalently: the \href{group+character#RelationToChernRootsAndSplittingPrinciple}{weights} of the [[group characters]] of $U(n)$). It follows that every [[complex vector bundle]] $\xi$ of [[rank]] $n$ over a space $X$ when pulled back to its [[flag space]] bundle decomposes as a [[direct sum]] of [[complex line bundles]] $\zeta_i$ and has [[Chern classes]] $c_k$ expressed in terms of the [[first Chern classes]] of these line bundles as \begin{displaymath} c_k(p^\ast \xi ) = \sigma_k(c_1(\zeta_1), \cdots, c_n(\zeta_n)) \,. \end{displaymath} This case is what is traditionally is often meant by default by the ``splitting principle''. For the [[special unitary group]] the situation is the same, only that here the splitting is into a sum of line bundles used [[tensor product]] is constrained to be trivializable. \hypertarget{linear_representations_and_brauer_induction}{}\subsubsection*{{Linear representations and Brauer induction}}\label{linear_representations_and_brauer_induction} The [[Brauer induction theorem]] may be regarded as the splitting principle for [[linear representations]] (\hyperlink{Symonds91}{Symonds 91}), see also at \emph{[[characteristic classes of linear representations]]}, \hypertarget{RealVectorBundles}{}\subsubsection*{{Real vector bundles}}\label{RealVectorBundles} Under the \emph{\href{Pontryagin+class#FurtherRelationToChernClasses}{Relation between Pontryagin classes and Chern classes}} the above translates into a splitting principle also for [[real vector bundles]]. \hypertarget{genera_and_hirzebruch_characteristic_series}{}\subsubsection*{{Genera and Hirzebruch characteristic series}}\label{genera_and_hirzebruch_characteristic_series} The basic theorem of [[Hirzebruch series]] expresses [[genera]] via the splitting principle. The Hirzebruch characteristic series $K_\phi$ is a [[series]] in a single variable $x = c_1(L)$, to be thought of as the [[first Chern class]] of the universal [[complex line bundle]] over $B U(1)$. The Hirzebruch formula for the value of the [[genus]] $\phi$ on an [[orientation|oriented]] [[manifold]] $X$ \begin{displaymath} \phi(X) = \langle K_\phi(T X), [X]\rangle \end{displaymath} denotes the pairing of that class of the [[tangent bundle]] with the [[fundamental class]] which under the splitting principle pulls back on the [[flag space]] bundle to the class $\prod_k K_\phi(x_k)$ of the corresponding direct sum of line bundles. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Snaith's theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter May]], \emph{A note on the splitting principle}, Topology and its Applications Volume 153, Issue 4, 1 November 2005, Pages 605-609 (\href{http://www.math.uchicago.edu/~may/PAPERS/Split.pdf}{pdf}, \href{https://doi.org/10.1016/j.topol.2005.02.007}{doi:10.1016/j.topol.2005.02.007}) \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, section 10.2 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \end{itemize} Discussion in the derivation of [[Chern classes]] and [[Stiefel-Whitney classes]] includes \begin{itemize}% \item [[Stanley Kochmann]], section 2.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Splitting_principle}{Splitting principle}} \item \emph{Notes on the splitting principle} (\href{http://www.math.sunysb.edu/~azinger/mat566/splitting.pdf}{pdf}) \item Johan L. Dupont, \emph{Curvature and Characteristic Classes}, Lecture Notes in Mathematics, \textbf{640} (1978) doi:\href{http://dx.doi.org/10.1007/BFb0065364}{10.1007/BFb0065364}. \end{itemize} Discussion in the context of [[complex oriented cohomology theory]] and their [[generalized Chern classes]] includes \begin{itemize}% \item \hyperlink{Kochmann96}{Kochmann 96, section 4.3} \item [[Jacob Lurie]], lecture 4 of \emph{[[Chromatic Homotopy Theory]]}, 2010 (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture4.pdf}{pdf}) \end{itemize} More expository discussion in the context of [[characteristic classes]] with applications in [[mathematical physics]] is in \begin{itemize}% \item [[Yang Zhang]], \emph{A brief introduction to characteristic classes from the differentiable viewpoint}, 2011 (pdfrief introduction to characteristic classes from the differentiable viewpoint.pdf)) \end{itemize} The generalization to a splitting principle for [[twisted vector bundles]] ([[twisted cohomology]]) is discussed (in terms of [[bundle gerbe modules]]) in \begin{itemize}% \item [[Atsushi Tomoda]], \emph{On the splitting principle of bundle gerbe modules}, Osaka J. Math. Volume 44, Number 1 (2007), 231-246. (\href{https://projecteuclid.org/euclid.ojm/1174324334}{Euclid}, talk slides \href{http://ton.prosou.nu/official/ryousi2005.pdf}{pdf}) \end{itemize} For [[characteristic classes of linear representations]]: \begin{itemize}% \item [[Peter Symonds]], \emph{A splitting principle for group representations}, Comment. Math. Helv. (1991) 66: 169 (\href{https://doi.org/10.1007/BF02566643}{doi:10.1007/BF02566643}) \end{itemize} [[!redirects Chern root]] \end{document}