\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stabilization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstract_definition}{Abstract definition}\dotfill \pageref*{abstract_definition} \linebreak \noindent\hyperlink{construction_in_terms_of_spectrum_objects}{Construction in terms of spectrum objects}\dotfill \pageref*{construction_in_terms_of_spectrum_objects} \linebreak \noindent\hyperlink{ConstructionInTermsOfStableModelCategories}{Construction in terms of stable model categories}\dotfill \pageref*{ConstructionInTermsOfStableModelCategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{stabilization} of an [[(∞,1)-category]] $C$ with [[finite (∞,1)-limits]] is the [[free construction|free]] [[stable (∞,1)-category]] $Stab(C)$ on $C$. This is also called the $(\infty,1)$-category of [[spectrum objects]] of $C$, because for the archetypical example where $C =$ [[Top]] the stabilization is $Stab(Top) \simeq Spec$ the category of [[spectrum|spectra]]. There is a canonical [[forgetful functor|forgetful]] [[(∞,1)-functor]] $\Omega^\infty : Stab(C) \to C$ that remembers of a [[spectrum object]] the underlying object of $C$ in degree 0. Under mild conditions, notably when $C$ is a [[presentable (∞,1)-category]], this functor has a [[left adjoint]] $\Sigma^\infty : C \to Stab(C)$ that \emph{freely stabilizes} any given object of $C$. \begin{displaymath} (\Sigma^\infty \dashv \Omega^\infty) : Stab(C) \stackrel{\overset{\Sigma^\infty}{\leftarrow}}{\underset{\Omega^\infty}{\to}} C \,. \end{displaymath} Going back and forth this way, i.e. applying the corresponding [[(∞,1)-monad]] $\Omega^\infty \circ \Sigma^\infty$ yields the assignment \begin{displaymath} X \mapsto \Omega^\infty \Sigma^\infty X \end{displaymath} that may be thought of as the \textbf{stabilization of an object} $X$. Indeed, as the notation suggests, $\Omega^\infty \Sigma^\infty X$ may be thought of as the result as $n$ goes to infinity of the operation that forms from $X$ first the $n$-fold [[suspension object]] $\Sigma^n X$ and then from that the $n$-fold [[loop space object]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{abstract_definition}{}\subsubsection*{{Abstract definition}}\label{abstract_definition} Let $C$ be an [[(∞,1)-category]] with [[finite (∞,1)-limit]] and write $C_* := C^{{*}/}$ for its [[(∞,1)-category]] of [[pointed objects]], the [[undercategory]] of $C$ under the [[terminal object]]. On $C_*$ there is the [[loop space object]] [[(infinity,1)-functor]] $\Omega : C_* \to C_*$, that sends each object $X$ to the [[pullback]] of the point inclusion ${*} \to X$ along itself. Recall that if a $(\infty,1)$-category is stable, the [[loop space object]] functor is an equivalence. The \emph{stabilization} $Stab(C)$ of $C$ is the [[(∞,1)-limit]] (in the [[(∞,1)-category of (∞,1)-categories]]) of the tower of applications of the loop space functor \begin{displaymath} Stab(C) = \underset{\leftarrow}{\lim} \left( \cdots \to C_* \stackrel{\Omega}{\to} C_* \stackrel{\Omega}{\to} C_* \right) \,. \end{displaymath} This is (\href{http://arxiv.org/abs/math/0608228}{StabCat, proposition 8.14}). The canonical functor from $Stab(C)$ to $C_*$ and then further, via the functor that forgets the basepoint, to $C$ is therefore denoted \begin{displaymath} \Omega^\infty : Stab(C) \to C \,. \end{displaymath} \hypertarget{construction_in_terms_of_spectrum_objects}{}\subsubsection*{{Construction in terms of spectrum objects}}\label{construction_in_terms_of_spectrum_objects} Concretely, for any $C$ with finite limits, $Stab(C)$ may be constructed as the category of [[spectrum object]]s of $C_*$: \begin{displaymath} Stab(C) = Sp(C_*) \,. \end{displaymath} This is definition 8.1, 8.2 in \href{http://arxiv.org/abs/math/0608228}{StabCat} \hypertarget{ConstructionInTermsOfStableModelCategories}{}\subsubsection*{{Construction in terms of stable model categories}}\label{ConstructionInTermsOfStableModelCategories} Given a presentation of an [[(∞,1)-category]] by a [[model category]], there is a notion of stabilization of this model category to a [[stable model category]]. That this in turn presents the abstractly defined stabilization of the corresponding [[(∞,1)-category]] is due to (\hyperlink{Robalo12}{Robalo 12, prop. 4.14}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item If $C$ is an $(\infty,1)$-category with finite limits that is a [[presentable (∞,1)-category]], then the functor $\Omega^\infty : Stab(C) \to C$ has a [[left adjoint]] \begin{displaymath} \Sigma^\infty : C \to Stab(C) \,. \end{displaymath} Prop 15.4 (2) of \href{http://arxiv.org/abs/math/0608228}{StabCat}. \item stabilization is \emph{not} in general functorial. It's failure of being functorial, and approximations to it, are studied in [[Goodwillie calculus]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $C =$ [[Top]] the stabilization is the category [[Spec]] of [[spectra]]. The functor $\Sigma^\infty : Top_* \to Spec$ is that which forms [[suspension spectra]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include k-monoidal table]] \hypertarget{References}{}\subsection*{{References}}\label{References} A general discussion in the context of [[(∞,1)-category theory]] is in \begin{itemize}% \item [[Jacob Lurie]], section 1.4 of \emph{[[Higher Algebra]]} \item [[Jacob Lurie]], section 1 of \emph{[[Spectral Schemes]]} \end{itemize} Discussion of stabilization as inversion of smashing with a suspension objects, and the relation between stabilization of [[(∞,1)-categories]] (to [[stable (∞,1)-categories]]) and of [[model categories]] (to [[stable model categories]]) in \begin{itemize}% \item [[Marco Robalo]], section 4 of \emph{Noncommutative Motives I: A Universal Characterization of the Motivic Stable Homotopy Theory of Schemes}, June 2012 (\href{http://arxiv.org/abs/1206.3645}{arxiv:1206.3645}) published as \item [[Marco Robalo]], section 2 of \emph{K-theory and the bridge from motives to noncommutative motives}, Advances in Mathematics Volume 269, 10 January 2015 (\href{https://doi.org/10.1016/j.aim.2014.10.011}{doi:10.1016/j.aim.2014.10.011}) \end{itemize} with further remarks in \begin{itemize}% \item [[Marc Hoyois]], section 6.1 of \emph{The six operations in equivariant motivic homotopy theory}, Adv. Math. 305 (2017), 197-279 (\href{https://arxiv.org/abs/1509.02145}{arXiv:1509.02145}) \end{itemize} [[!redirects stabilizations]] [[!redirects stabilization of an (∞,1)-category]] [[!redirects stabilization of an (infinity,1)-category]] [[!redirects stabilization of an ∞-category]] [[!redirects stabilization of an infinity-category]] [[!redirects stabilization of (∞,1)-categories]] [[!redirects stabilization of (infinity,1)-categories]] [[!redirects stabilization of ∞-categories]] [[!redirects stabilization of infinity-categories]] \end{document}