\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stable Dold-Kan correspondence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{in_terms_of_abelian_combinatorial_spectra}{In terms of abelian combinatorial spectra}\dotfill \pageref*{in_terms_of_abelian_combinatorial_spectra} \linebreak \noindent\hyperlink{InTermsOfEMModuleSpectra}{In terms of EM-module spectra}\dotfill \pageref*{InTermsOfEMModuleSpectra} \linebreak \noindent\hyperlink{monoidal_version_in_terms_of_emmodule_specta}{Monoidal version in terms of EM-module specta}\dotfill \pageref*{monoidal_version_in_terms_of_emmodule_specta} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Dold-Kan correspondence]] [[stabilization|stabilizes]] to identify \emph{unbounded} [[chain complexes]] with certain [[spectra]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{in_terms_of_abelian_combinatorial_spectra}{}\subsubsection*{{In terms of abelian combinatorial spectra}}\label{in_terms_of_abelian_combinatorial_spectra} The following theorem was established in (\hyperlink{Kan63}{Kan 63, prop. 5.8}) \begin{theorem} \label{}\hypertarget{}{} The [[category of unbounded chain complexes]] is [[equivalence of categories|equivalent]] to the category of [[combinatorial spectra]] [[internalization|internal]] to [[abelian groups]]. \end{theorem} Similarly to the unstable case, the above categories, when interpreted as ∞-categories, are also equivalent to the ∞-category of module spectra over the Eilenberg-MacLane ring spectrum of the integers. See the section \emph{\href{module+spectrum#StableDoldKanCorrespondence}{stable Dold-Kan correspondence}} at \emph{[[module spectrum]]}. \hypertarget{InTermsOfEMModuleSpectra}{}\subsubsection*{{In terms of EM-module spectra}}\label{InTermsOfEMModuleSpectra} \begin{theorem} \label{StableDoldKan}\hypertarget{StableDoldKan}{} For $R$ any [[ring]] (or [[ringoid]], even) there is a [[Quillen equivalence]] \begin{displaymath} H R ModSpectra \simeq Ch_\bullet(R Mod) \end{displaymath} between a model structure on $H R$-[[module spectra]] over the [[Eilenberg-MacLane spectrum]] $H R$ and the [[model structure on unbounded chain complexes]] of ordinary $R$-[[modules]]. This presents a corresponding [[equivalence of (∞,1)-categories]]. If $R$ is a [[commutative ring]], then this is an equivalence of [[symmetric monoidal (∞,1)-categories]]. \end{theorem} This equivalence on the level of [[homotopy categories]] is due to (\hyperlink{Robinson87}{Robinson 87}). The refinement to a [[Quillen equivalence]] is (\hyperlink{SchwedeShipley03}{Schwede-Shipley 03, theorem 5.1.6}). See also the discussion at \emph{[[stable model categories]]}. A direct description as an [[equivalence of (∞,1)-categories]] appears as ([[Higher Algebra|Lurie HA, theorem 7.1.2.13]]). For $R = \mathbb{Q}$ the [[rational numbers]], then theorem \ref{StableDoldKan} may be thought of as a stable analog of classical [[rational homotopy theory]], see at \emph{[[rational stable homotopy theory]]} for more on this. More generally: \begin{theorem} \label{HRAlgerasAreRdgAlgebras}\hypertarget{HRAlgerasAreRdgAlgebras}{} For $R$ a [[commutative ring]], then there is a [[zig-zag]] of [[Quillen equivalences]] between a [[model structure for ring spectra]] over $H R$ and [[model structure on dg-algebras]] over $R$. In particular the induced [[total derived functors]] constitute an [[equivalence of categories|equivalence]] of [[homotopy categories]]: \begin{displaymath} H R AlgSpec \underoverset {\underset{\Theta}{\longrightarrow}} {\overset{H}{\longleftarrow}} {\simeq} dgAlg_R \end{displaymath} \end{theorem} (\hyperlink{Shipley02}{Shipley 02, theorem 1.1}) \begin{theorem} \label{HAModueSpectraAreAdgModules}\hypertarget{HAModueSpectraAreAdgModules}{} For $A$ any [[dg-algebra]], then there is a [[Quillen equivalence]] \begin{displaymath} (H A) ModSpec \simeq_{Quillen} A Mod \end{displaymath} between $H A$-[[module spectra]] and [[dg-modules]] over $A$. Dually, for $E$ an $H \mathbb{Z}$-[[algebra spectrum]], then there is a [[Quillen equivalence]] \begin{displaymath} E ModSpec \simeq_{Quillen} (\Theta E) Mod \end{displaymath} where $H(-)$ and $\Theta(-)$ are from theorem \ref{HRAlgerasAreRdgAlgebras}. \end{theorem} (\hyperlink{SchwedeShipley03}{Schwede-Shipley 03, theorem 5.1.6}, \hyperlink{Shipley02}{Shipley 02, corollary 2.15}) \begin{remark} \label{}\hypertarget{}{} The [[forgetful functor|forgetful]] [[(∞,1)-functor]] $H R Mod \longrightarrow$ [[Spectra]] preserves [[(∞,1)-limits]], so that (after [[simplicial localization]] $L$) we have an [[(∞,1)-functor]] \begin{displaymath} DK \;\colon\; L_{qi} Ch_\bullet(R) \stackrel{\simeq}{\longrightarrow} H R Mod \stackrel{}{\longrightarrow} Spectra \end{displaymath} from the [[(∞,1)-category of chain complexes]] to the [[(∞,1)-category of spectra]] which preseres [[(∞,1)-limits]]. In particular therefore a [[presheaf]] of [[chain complexes]] (as it appears in [[abelian sheaf cohomology]]/[[hypercohomology]]) which satisfies [[descent]] (for some given [[(∞,1)-site]] structure, hence which is an [[(∞,1)-sheaf]]/[[∞-stack]] of chain complexes) maps under the stable Dold-Kan correspondence $DK$ to an [[(∞,1)-sheaf of spectra]]. \end{remark} \begin{example} \label{}\hypertarget{}{} For $X$ a [[topological space]] and $R$ a ring, let $C_\bullet(X, R)$ be the standard [[chain complex]] for [[singular homology]] $H_\bullet(X, R)$ of $X$ with coefficients in $R$. Under the stable Dold-Kan correspondence, prop. \ref{StableDoldKan}, this ought to be identified with the [[smash product]] $(\Sigma^\infty_+ X) \wedge H R$ of the [[suspension spectrum]] of $X$ with the [[Eilenberg-MacLane spectrum]]. Notice that by the general theory of [[generalized homology]] the [[homotopy groups]] of the latter are again singular homology \begin{displaymath} \pi_\bullet( (\Sigma^\infty_+ X) \wedge H R) \simeq H_\bullet(X, R) \,. \end{displaymath} While the correspondence $(\Sigma^\infty_+ X) \wedge H R \sim C_\bullet(X,R)$ under the above equivalence is suggestive, maybe nobody has really checked it in detail. It is sort of stated as true for instance on of (\hyperlink{BCT}{BCT}). \end{example} \hypertarget{monoidal_version_in_terms_of_emmodule_specta}{}\subsubsection*{{Monoidal version in terms of EM-module specta}}\label{monoidal_version_in_terms_of_emmodule_specta} More in detail we have the following statement. Let $R \coloneqq H \mathbb{Z}$ be the [[Eilenberg-MacLane spectrum]] for the [[integers]]. \begin{prop} \label{}\hypertarget{}{} There is a zig-zag of [[monoidal Quillen adjunction|lax monoidal]] [[Quillen equivalences]] \begin{displaymath} H \mathbb{Z} Mod \stackrel{\overset{Z}{\longrightarrow}}{\underset{U}{\leftarrow}} Sp^\Sigma(sAb) \stackrel{\overset{L}{\leftarrow}}{\underset{\phi^* N}{\longrightarrow}} Sp^\Sigma(Ch_+) \stackrel{\overset{D}{\longrightarrow}}{\underset{R}{\leftarrow}} Ch_\bullet \,, \end{displaymath} between [[monoidal model categories]] satisfying the [[monoid axiom in a monoidal model category]]: \begin{itemize}% \item the model structure for $H \mathbb{Z}$-[[module spectra]]; \item the [[model structure on symmetric spectrum objects]] in [[simplicial abelian group]]s and in [[chain complex]]es; \item and the [[model structure on chain complexes]] (unbounded). \end{itemize} This induces a [[Quillen equivalence]] between the corresponding [[model structures on monoids]] in these [[monoidal category|monoidal categories]], which on the left is the model structure on $H \mathbb{Z}$-algebra spectra and on the right the [[model structure on dg-algebras]]: \begin{displaymath} H \mathbb{Z} Alg \simeq dgAlg_\mathbb{Z} \,. \end{displaymath} \end{prop} This is due to (\hyperlink{Shipley02}{Shipley 02}). The corresponding [[equivalence of (∞,1)-categories]] for $R$ a commutative rings with the intrinsically defined [[(∞,1)-category]] of [[En-algebra|E1-algebra]] objects on the left appears as ([[Higher Algebra|Lurie HA, prop. 7.1.4.6]]). \begin{remark} \label{}\hypertarget{}{} This is a stable version of the [[monoidal Dold-Kan correspondence]]. See there for more details. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[∞-Dold-Kan correspondence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Daniel Kan]], \emph{Semisimplicial spectra}, Illinois J. Math. Volume 7, Issue 3 (1963), 463-478. (\href{http://projecteuclid.org/euclid.ijm/1255644953}{Euclid}) \item Alan Robinson, \emph{The extraordinary derived category}, Math. Z. 196 (2) (1987) 231--238. \item [[Stefan Schwede]], [[Brooke Shipley]], \emph{Stable model categories are categories of modules}, Topology 42 (2003), 103-153 (\href{http://www.math.uic.edu/~bshipley/classTopFinal.pdf}{pdf}) \item [[Brooke Shipley]], \emph{$H \mathbb{Z}$-algebra spectra are differential graded algebras}, Amer. Jour. of Math. 129 (2007) 351-379. (\href{http://arxiv.org/abs/math/0209215}{arXiv:math/0209215}) \item [[John Frederick Jardine]], \emph{Stable Dold-Kan theory}, section 4.6 of \emph{Generalized \'E{}tale cohomology theories}, Modern Birkh\"a{}user classics (1991) \item [[Andrew Blumberg]], [[Ralph Cohen]], [[Constantin Teleman]], \emph{Open-closed field theories, string topology and Hochschild homology} (\href{http://arxiv.org/abs/0906.5198}{arXiv:0906.5198}) \item [[Jacob Lurie]], section 7.1.4 of \emph{[[Higher Algebra]]} \item [[Jacob Lurie]], \emph{[[Deformation Theory]]} \end{itemize} \end{document}