\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stable homotopy category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{via_eventually_defined_maps}{Via eventually defined maps}\dotfill \pageref*{via_eventually_defined_maps} \linebreak \noindent\hyperlink{ViaSpectrificationofSequentialPreSpectra}{Via left homotopy}\dotfill \pageref*{ViaSpectrificationofSequentialPreSpectra} \linebreak \noindent\hyperlink{via_model_structures}{Via model structures}\dotfill \pageref*{via_model_structures} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{symmetric_monoidal_structure}{Symmetric monoidal structure}\dotfill \pageref*{symmetric_monoidal_structure} \linebreak \noindent\hyperlink{triangulated_structure}{Triangulated structure}\dotfill \pageref*{triangulated_structure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{stable homotopy category} $Ho(Spectra)$ is the [[category]] of [[spectra]] and [[homotopy classes]] of morphisms between them, the object of study in classical [[stable homotopy theory]]. Equivalently this is the [[homotopy category of an (∞,1)-category]] of the [[stable (∞,1)-category of spectra]] and the latter is the proper context for [[stable homotopy theory]]. But with due care exercised, the stable homotopy category itself is useful. The stable homotopy category may be thought of as the [[stabilization]] of the [[classical homotopy category]] $Ho(Top)$ under the operation of forming [[loop space objects]] $\Omega$ and [[reduced suspensions]] $\Sigma$: via forming [[suspension spectra]] $\Sigma^\infty$ every [[pointed object]] in the [[classical homotopy category]] maps to the stable homotopy category, and under this map the [[loop space]]- and [[reduced suspension]]-[[functors]] become inverse [[equivalence of categories|equivalences]] on the stable homotopy category. \begin{displaymath} \itexarray{ Ho(Top)^{\ast/} & \underoverset{\underset{\Omega}{\longrightarrow}}{\overset{\Sigma}{\longleftarrow}}{} & Ho(Top)^{\ast/} \\ {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} && {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} \\ Ho(Spectra) & \underoverset{\underset{\Omega}{\longrightarrow}}{\overset{\Sigma}{\longleftarrow}}{\simeq} & Ho(Spectra) } \,. \end{displaymath} In contrast to the [[classical homotopy category]], the stable homotopy category is a [[triangulated category]] (a shadow of the fact that the [[(∞,1)-category of spectra]] is a [[stable (∞,1)-category]]). As such it may be thought of as a refinement of the [[derived category]] [[category of chain complexes|of chain complexes]] (of [[abelian groups]]): every [[chain complex]] gives rise to a [[spectrum]] and every [[chain map]] to a map between these spectra (the [[stable Dold-Kan correspondence]]), but there are many more spectra and maps between them than arise from chain complexes and chain maps. Equipped with the [[smash product of spectra]] ``$\wedge$'' and with [[function spectra]] $[-,-]$, the stable homotopy category becomes a [[symmetric monoidal category|symmetric]] [[closed monoidal category]]. A ([[commutative monoid|commutative]]) [[monoid object]] with respect to $\wedge$ is ([[commutative ring spectrum|commutative]]) [[ring spectrum]]. For $E \in Ho(Spectra)$ any spectrum, then the [[functor]] \begin{displaymath} E_\bullet \coloneqq \pi_0((\Sigma^\bullet E) \wedge(-)) \;\colon\; Ho(Spectra) \longrightarrow Ab \end{displaymath} is a [[generalized homology theory]], while the functor \begin{displaymath} E^\bullet \coloneqq \pi_0[-,\Sigma^\bullet E] \;\colon\; Ho(Spectra)^\op \longrightarrow Ab \end{displaymath} is a [[generalized cohomology theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are various different-looking ways to define the stable homotopy category. \hypertarget{via_eventually_defined_maps}{}\subsubsection*{{Via eventually defined maps}}\label{via_eventually_defined_maps} One of the first constructions of the stable homotopy category is due to (\hyperlink{Adams74}{Adams 74, part III, sections 2 and 3}), following (\hyperlink{Boardman65}{Boardman 65}). This \emph{[[Adams category]]} is defined to be the category of [[CW-spectra]] with [[homotopy classes]] (with respect to [[cylinder spectra]]) of ``eventually defined'' functions between them. Hostorically this was advertized as being a construction free of tools of [[category theory]]. See (\hyperlink{LewismaySteinberger86}{Lewis-May-Steinberger 86, pages 1-3}) for review and critical assessment \hypertarget{ViaSpectrificationofSequentialPreSpectra}{}\subsubsection*{{Via left homotopy}}\label{ViaSpectrificationofSequentialPreSpectra} (\hyperlink{LewisMaySteinberger86}{Lewis-May-Steinberger 86, ``preamble'' pages 1-7}, \hyperlink{ElmendorfKrizMay95}{Elmendorf-Kriz-May 95, p. 8}, \hyperlink{Malkiewich14}{Malkiewich 14}) For $E$ a [[sequential spectrum|sequential]] [[pre-spectrum]] and $X$ a [[pointed topological space]], write \begin{displaymath} (E \wedge X)_n \coloneqq E_n \wedge X \end{displaymath} for the degreewise [[smash product]] of [[pointed topological spaces]]. Write $I_+$ for the unit [[interval]] with a base point adjoined, such that for any spectrum $E$, the [[smash product]] $E \wedge I_+$ is its \emph{[[cylinder spectrum]]}. A \emph{[[left homotopy]]} between morphism of pre-spectra $f,g \colon E_1 \longrightarrow E_2$ is a morphism of spectra \begin{displaymath} \phi \;\colon\; E_1\wedge I_+ \longrightarrow E_2 \end{displaymath} such that $\phi|_0 = f$ and $\phi|_1 = g$. In order for this to be the homotopy-correct notion, we need to apply it with [[domain]] a [[CW-spectrum]] and [[codomain]] an [[Omega-spectrum]]. Let $PreSpectra \stackrel{\overset{L}{\longrightarrow}}{\underset{\ell}{\longleftarrow}} Spectra$ be the 1-categorical [[adjunction]] between [[Omega-spectra]] and [[prespectra]], in the sense defined at [[coordinate-free spectrum]], where $\ell$ is the [[forgetful functor]] and $L$ is [[spectrification]]. There is also a [[CW-spectrum]]-replacement functor $\Gamma$. Write then \begin{displaymath} [E_1,E_2] \coloneqq Hom(\Gamma E_1, L E_2)_{\sim_{left\;homotopy}} \end{displaymath} for the corresponding [[homotopy classes]] of maps. \hypertarget{via_model_structures}{}\subsubsection*{{Via model structures}}\label{via_model_structures} There are several [[model categories]] which exhibit [[model structures for spectra]], hence whose [[homotopy category of a model category]] is equivalent to the stable homotopy category. The most lightweight of these is the [[Bousfield-Friedlander model structure]] of [[sequential spectrum|sequential]] [[pre-spectra]] in [[simplicial sets]] (\hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78}) Model structures on more [[highly structured spectra]] include the [[model structure on symmetric spectra]], the [[model structure on orthogonal spectra]], and ultimately the [[model structure for excisive functors]]. It is only with these model structures that the [[smash product of spectra]] is represented by a [[symmetric monoidal smash product of spectra]] even before passing to the stable homotopy category. A unified account of all thes model structures is at \emph{[[Model categories of diagram spectra]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{symmetric_monoidal_structure}{}\subsubsection*{{Symmetric monoidal structure}}\label{symmetric_monoidal_structure} The [[smash product of spectra]] makes the stable homotopy category into a [[symmetric monoidal category]]. An ([[commutative monoid|commutative]]) [[monoid object]] with respect to this is a ([[commutative ring spectrum|commutative]]) [[ring spectrum]]. A [[module object]] over such is a [[module spectrum]]. \hypertarget{triangulated_structure}{}\subsubsection*{{Triangulated structure}}\label{triangulated_structure} The [[homotopy fiber sequences]] of spectra gives the stable homotopy category the structure of a [[triangulated category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Ho(Top)]] \item [[Whitehead theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original direct definitions of the stable homotopy category (for precursors see at \emph{[[Spanier-Whitehead category]]}) is due to \begin{itemize}% \item [[Michael Boardman]], \emph{Stable homotopy theory}, mimeographed notes, University of Warwick, 1965 onward \end{itemize} Early accounts include \begin{itemize}% \item [[Rainer Vogt]], \emph{Boardman's stable homotopy category}, lectures, spring 1969 \item J. M. Cohen, \emph{Stable Homotopy}, Springer Lecture Notes in Math., No. 165, Springer-Verlag, Berlin, 1970. \item [[Dieter Puppe]], \emph{On the stable homotopy category}, Topology and its application (1973) ([[PuppeStableHomotopyCategory.pdf:file]]) \item [[Frank Adams]], Part III, section 2 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Robert Switzer]], \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \end{itemize} A fun scan of the (pre-)history of the stable homotopy category is in \begin{itemize}% \item [[Peter May]], \emph{The hare and the hedgehog}, speech at [[Michael Boardman]]`s birthday meeting (\href{http://hopf.math.purdue.edu/May/boardman.txt}{txt}) \end{itemize} See also the references at \emph{[[stable homotopy theory]]}. Original articles realizing the stabel homotopy category as the [[homotopy category]] of a [[model category]] include \begin{itemize}% \item [[Aldridge Bousfield]], [[Eric Friedlander]], \emph{Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets}, Springer Lecture Notes in Math., Vol. 658, Springer, Berlin, 1978, pp. 80-130. (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/bousfield-friedlander.pdf}{pdf}) \end{itemize} Original articles in the context of [[highly structured spectra]] include \begin{itemize}% \item [[L. Gaunce Lewis]], [[Peter May]], M. Steinberger, \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics, 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Peter May]], \emph{[[Modern foundations for stable homotopy theory]]}, in [[Ioan Mackenzie James]] (ed.), \emph{[[Handbook of Algebraic Topology]]}, Amsterdam: North-Holland, 1995 pp. 213--253, (\href{http://hopf.math.purdue.edu/Elmendorf-Kriz-May/modern_foundations.pdf}{pdf}) \item [[John Greenlees]], [[Peter May]], \emph{Equivariant stable homotopy theory}, in I.M. James (ed.), \emph{[[Handbook of Algebraic Topology]]} , pp. 279-325. 1995. (\href{http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf}{pdf}) \end{itemize} A textbook account in the context of [[symmetric spectra]] is \begin{itemize}% \item [[Stefan Schwede]], chapter II, section 1\_[[Symmetric spectra]]\_ (2012) \end{itemize} Lecture notes include \begin{itemize}% \item [[Cary Malkiewich]], \emph{The stable homotopy category}, 2014 (\href{http://math.stanford.edu/~carym/stable.pdf}{pdf}) \end{itemize} [[!redirects HoSpectra]] [[!redirects Ho(Spectra)]] \end{document}