\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stable splitting of mapping spaces} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{goodwillie_calculus}{}\paragraph*{{Goodwillie calculus}}\label{goodwillie_calculus} [[!include Goodwillie calculus - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Statements}{Statements}\dotfill \pageref*{Statements} \linebreak \noindent\hyperlink{prelude_equivalence_to_the_infinite_configuration_space}{Prelude: Equivalence to the infinite configuration space}\dotfill \pageref*{prelude_equivalence_to_the_infinite_configuration_space} \linebreak \noindent\hyperlink{StableSplittings}{Stable splitting of mapping spaces}\dotfill \pageref*{StableSplittings} \linebreak \noindent\hyperlink{InTermsOfGoodwillieTowers}{In terms of Goodwillie-Taylor towers}\dotfill \pageref*{InTermsOfGoodwillieTowers} \linebreak \noindent\hyperlink{lax_closed_structure_on_}{Lax closed structure on $\Sigma^\infty$}\dotfill \pageref*{lax_closed_structure_on_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[stabilization]]/[[suspension spectrum]] $\Sigma^\infty Maps(X,A)$ of [[mapping spaces]] $Maps(X,A)$ between suitable [[CW-complexes]] $X, A$ happens to decompose as a [[direct sum]] of [[spectra]] (a [[wedge sum]]) in a useful way, related to the expression of the [[Goodwillie derivatives]] of the functor $Maps(X,-)$ and often expressible in terms of the [[configuration space (mathematics)|configuration spaces]] of $X$. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The stable splitting of mapping spaces discussed \hyperlink{StableSplittings}{below} have summands given by [[configuration spaces of points]], or generalizations thereof. To be self-contained, we recall the relevant definitions here. The following Def. \ref{ConfigurationSpacesOfnPoints} is not the most general definition of [[configuration spaces of points]] that one may consider in this context, instead it is streamlined to certain applications. See Remark \ref{ComparisonToNotationInLiterature} below for comparison of notation used here to notation used elsewhere. \begin{defn} \label{ConfigurationSpacesOfnPoints}\hypertarget{ConfigurationSpacesOfnPoints}{} \textbf{([[configuration spaces of points]])} Let $X$ be a [[manifold]], possibly with [[manifold with boundary|boundary]]. For $n \in \mathbb{N}$, the \emph{\textbf{configuration space of $n$ distinguishable points} in $X$ disappearing at the boundary} is the [[topological space]] \begin{equation} \mathrm{Conf}^{ord}_{n}(X) \;\coloneqq\; \big( X^n \setminus \mathbf{\Delta}_X^n \big) / \partial(X^n) \label{DistinguishableConfigurationSpaceJustForX}\end{equation} which is the [[complement]] of the [[fat diagonal]] $\mathbf{\Delta}_X^n \coloneqq \{(x^i) \in X^n | \underset{i,j}{\exists} (x^i = x^j) \}$ inside the $n$-fold [[product space]] of $X$ with itself, followed by [[quotient space|collapsing]] any configurations with elements on the [[boundary]] of $X$ to a common [[pointed topological space|base point]]. Then the \emph{\textbf{configuration space of $n$ in-distinguishable points} in $X$ is the further [[quotient topological space]]} \begin{equation} \mathrm{Conf}_{n}(X) \;\coloneqq\; Conf_n^{ord}(X)/\Sigma_n \;=\; \Big( \big( X^n \setminus \mathbf{\Delta}_X^n \big) / \partial(X^n) \Big) /\Sigma(n) \,, \label{ConfigurationSpaceJustForX}\end{equation} where $\Sigma(n)$ denotes the evident [[action]] of the [[symmetric group]] by [[permutation]] of factors of $X$ inside $X^n$. More generally, let $Y$ be another [[manifold]], possibly with [[manifold with boundary|boundary]]. For $n \in \mathbb{N}$, the \emph{\textbf{configuration space of $n$ points} in $X \times Y$ vanishing at the boundary and distinct as points in $X$} is the [[topological space]] \begin{equation} \mathrm{Conf}_{n}(X,Y) \;\coloneqq\; \Big( \big( ( X^n \setminus \mathbf{\Delta}_X^n ) \times Y^n \big) / \partial(X^n \times Y^n) \Big) /\Sigma(n) \label{ConfigurationSpaceWithXAndY}\end{equation} where now $\Sigma(n)$ denotes the evident [[action]] of the [[symmetric group]] by [[permutation]] of factors of $X \times Y$ inside $X^n \times Y^n \simeq (X \times Y)^n$. This more general definition reduces to the previous case for $Y = \ast \coloneqq \mathbb{R}^0$ being the point: \begin{displaymath} \mathrm{Conf}_n(X) \;=\; \mathrm{Conf}_n(X,\ast) \,. \end{displaymath} Finally the \emph{\textbf{configuration space of an arbitrary number of points} in $X \times Y$ vanishing at the boundary and distinct already as points of $X$} is the [[quotient topological space]] of the [[disjoint union space]] \begin{displaymath} Conf\left( X, Y\right) \;\coloneqq\; \left( \underset{n \in \mathbb{n}}{\sqcup} \big( ( X^n \setminus \mathbf{\Delta}_X^n ) \times Y^k \big) /\Sigma(n) \right)/\sim \end{displaymath} by the [[equivalence relation]] $\sim$ given by \begin{displaymath} \big( (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}), (x_n, y_n) \big) \;\sim\; \big( (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}) \big) \;\;\;\; \Leftrightarrow \;\;\;\; (x_n, y_n) \in \partial (X \times Y) \,. \end{displaymath} This is naturally a [[filtered topological space]] with filter stages \begin{displaymath} Conf_{\leq n}\left( X, Y\right) \;\coloneqq\; \left( \underset{k \in \{1, \cdots, n\}}{\sqcup} \big( ( X^k \setminus \mathbf{\Delta}_X^k ) \times Y^k \big) /\Sigma(k) \right)/\sim \,. \end{displaymath} The corresponding [[quotient topological spaces]] of the filter stages reproduces the above configuration spaces of a fixed number of points: \begin{displaymath} Conf_n(X,Y) \;\simeq\; Conf_{\leq n}(X,Y) / Conf_{\leq (n-1)}(X,Y) \,. \end{displaymath} \end{defn} \begin{remark} \label{ComparisonToNotationInLiterature}\hypertarget{ComparisonToNotationInLiterature}{} \textbf{(comparison to notation in the literature)} The above Def. \ref{ConfigurationSpacesOfnPoints} is less general but possibly more suggestive than what is considered for instance in \hyperlink{Boedigheimer87}{Bödigheimer 87}. Concretely, we have the following translations of notation: \begin{displaymath} \itexarray{ \text{ here: } && \itexarray{ \text{ Segal 73,} \\ \text{ Snaith 74}: } && \text{ Bödigheimer 87: } \\ \\ Conf(\mathbb{R}^d,Y) &=& C_d( Y/\partial Y ) &=& C( \mathbb{R}^d, \emptyset; Y ) \\ \mathrm{Conf}_n\left( \mathbb{R}^d \right) & = & F_n C_d( S^0 ) / F_{n-1} C_d( S^0 ) & = & D_n\left( \mathbb{R}^d, \emptyset; S^0 \right) \\ \mathrm{Conf}_n\left( \mathbb{R}^d, Y \right) & = & F_n C_d( Y/\partial Y ) / F_{n-1} C_d( Y/\partial Y ) & = & D_n\left( \mathbb{R}^d, \emptyset; Y/\partial Y \right) \\ \mathrm{Conf}_n( X ) && &=& D_n\left( X, \partial X; S^0 \right) \\ \mathrm{Conf}_n( X, Y ) && &=& D_n\left( X, \partial X; Y/\partial Y \right) } \end{displaymath} Notice here that when $Y$ happens to have [[empty space|empty]] [[boundary]], $\partial Y = \emptyset$, then the [[pushout]] \begin{displaymath} Y / \partial Y \coloneqq Y \underset{\partial Y}{\sqcup} \ast \end{displaymath} is $Y$ with a \href{pointed+topological+space#ForgettingAndAdjoiningBasepoints}{disjoint basepoint attached}. Notably for $Y =\ast$ the [[point space]], we have that \begin{displaymath} \ast/\partial \ast = S^0 \end{displaymath} is the [[0-sphere]]. \end{remark} \hypertarget{Statements}{}\subsection*{{Statements}}\label{Statements} \hypertarget{prelude_equivalence_to_the_infinite_configuration_space}{}\subsubsection*{{Prelude: Equivalence to the infinite configuration space}}\label{prelude_equivalence_to_the_infinite_configuration_space} First recall the following equivalence already before [[stabilization]]: \begin{prop} \label{ScanningMapEquivalenceOverCartesianSpace}\hypertarget{ScanningMapEquivalenceOverCartesianSpace}{} For \begin{enumerate}% \item $d \in \mathbb{N}$, $d \geq 1$ a [[natural number]] with $\mathbb{R}^d$ denoting the [[Cartesian space]]/[[Euclidean space]] of that [[dimension]], \item $Y$ a [[manifold]], with [[inhabited set|non-empty]] [[manifold with boundary|boundary]] so that $Y / \partial Y$ is [[connected topological space|connected]], \end{enumerate} the [[scanning map]] constitutes a [[homotopy equivalence]] \begin{displaymath} Conf\left( \mathbb{R}^d, Y \right) \overset{scan}{\longrightarrow} \Omega^d \Sigma^d (Y/\partial Y) \end{displaymath} between \begin{enumerate}% \item the configuration space of arbitrary points in $\mathbb{R}^d \times Y$ vanishing at the boundary (Def. \ref{ConfigurationSpacesOfnPoints}) \item the $d$-fold [[loop space]] of the $d$-fold [[reduced suspension]] of the [[quotient space]] $Y / \partial Y$ (regarded as a [[pointed topological space]] with basepoint $[\partial Y]$). \end{enumerate} In particular when $Y = \mathbb{D}^k$ is the [[closed ball]] of [[dimension]] $k \geq 1$ this gives a [[homotopy equivalence]] \begin{displaymath} Conf\left( \mathbb{R}^d, \mathbb{D}^k \right) \overset{scan}{\longrightarrow} \Omega^d S^{ d + k } \end{displaymath} with the $d$-fold [[loop space]] of the [[n-sphere|(d+k)-sphere]]. \end{prop} (\hyperlink{May72}{May 72, Theorem 2.7}, \hyperlink{Segal73}{Segal 73, Theorem 3}) \hypertarget{StableSplittings}{}\subsubsection*{{Stable splitting of mapping spaces}}\label{StableSplittings} \begin{prop} \label{StableSplittingOfMappingSpacesOutOfEuclideanSpace}\hypertarget{StableSplittingOfMappingSpacesOutOfEuclideanSpace}{} \textbf{([[stable splitting of mapping spaces]] out of [[Euclidean space]]/[[n-spheres]])} For \begin{enumerate}% \item $d \in \mathbb{N}$, $d \geq 1$ a [[natural number]] with $\mathbb{R}^d$ denoting the [[Cartesian space]]/[[Euclidean space]] of that [[dimension]], \item $Y$ a [[manifold]], with [[inhabited set|non-empty]] [[manifold with boundary|boundary]] so that $Y / \partial Y$ is [[connected topological space|connected]], \end{enumerate} there is a [[stable weak homotopy equivalence]] \begin{displaymath} \Sigma^\infty Conf(\mathbb{R}^d, Y) \overset{\simeq}{\longrightarrow} \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y) \end{displaymath} between \begin{enumerate}% \item the [[suspension spectrum]] of the [[configuration space of points|configuration space]] of an arbitrary number of points in $\mathbb{R}^d \times Y$ vanishing at the boundary and distinct already as points of $\mathbb{R}^d$ (Def. \ref{ConfigurationSpacesOfnPoints}) \item the [[direct sum]] (hence: [[wedge sum]]) of [[suspension spectra]] of the [[configuration space of points|configuration spaces]] of a fixed number of points in $\mathbb{R}^d \times Y$, vanishing at the boundary and distinct already as points in $\mathbb{R}^d$ (also Def. \ref{ConfigurationSpacesOfnPoints}). \end{enumerate} Combined with the [[stabilization]] of the [[scanning map]] [[homotopy equivalence]] from Prop. \ref{ScanningMapEquivalenceOverCartesianSpace} this yields a [[stable weak homotopy equivalence]] \begin{equation} Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y)) = Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y)) = \Omega^d \Sigma^d (Y/\partial Y) \underoverset{\Sigma^\infty scan}{\simeq}{\longrightarrow} \Sigma^\infty Conf(\mathbb{R}^d, Y) \overset{\simeq}{\longrightarrow} \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y) \label{StableSplittingOfMappingSpacesOutOfSphere}\end{equation} between the latter direct sum and the [[suspension spectrum]] of the [[mapping space]] of pointed [[continuous functions]] from the [[n-sphere|d-sphere]] to the $d$-fold [[reduced suspension]] of $Y / \partial Y$. \end{prop} (\hyperlink{Snaith74}{Snaith 74, theorem 1.1}, \hyperlink{Boedigheimer87}{Bödigheimer 87, Example 2}) In fact by \hyperlink{Boedigheimer87}{Bödigheimer 87, Example 5} this equivalence still holds with $Y$ treated on the same footing as $\mathbb{R}^d$, hence with $Conf_n(\mathbb{R}^d, Y)$ on the right replaced by $Conf_n(\mathbb{R}^d \times Y)$ in the well-adjusted notation of Def. \ref{ConfigurationSpacesOfnPoints}: \begin{displaymath} Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y)) = Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y)) \overset{\simeq}{\longrightarrow} \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d \times Y) \end{displaymath} \hypertarget{InTermsOfGoodwillieTowers}{}\subsubsection*{{In terms of Goodwillie-Taylor towers}}\label{InTermsOfGoodwillieTowers} We discuss the interpretation of the above stable splitting of mapping spaces from the point of view of [[Goodwillie calculus]], following \hyperlink{Arone99}{Arone 99, p. 1-2}, \hyperlink{Goodwillie03}{Goodwillie 03, p. 6}. Observe that the [[configuration space of points]] $Conf_n(X,Y)$ from Def. \ref{ConfigurationSpacesOfnPoints}, given by the formula \eqref{ConfigurationSpaceWithXAndY} \begin{displaymath} Conf_n(X,Y) \;\coloneqq\; \Big( \big( ( X^n \setminus \mathbf{\Delta}_X^n ) \times Y^n \big) / \partial(X^n \times Y^n) \Big) /\Sigma(n) \end{displaymath} is the [[quotient]] by the [[symmetric group]]-[[action]] of the \emph{[[smash product]]} $Conf_n(X) \wedge (Y/\partial Y)^n$ of the plain Configuration space $Conf_n(X)$ \eqref{ConfigurationSpaceJustForX} (regarded as a [[pointed topological space]] with basepoint the class of the [[boundary]] $\left[\partial\left(X^n\right)\right]$) with the analogous [[pointed topological space]] given by $Y$, the latter in fact being (since here we do not form the [[complement]] by the [[fat diagonal]]) an $n$-fold [[smash product]] itself: \begin{displaymath} Y^{\times_n}/\partial (Y^{\times_n}) \;\simeq\; ( Y/\partial Y )^{\wedge_n} \,. \end{displaymath} Hence in summary: \begin{equation} Conf_n(X, Y) \;\simeq\; Conf^{ord}_n(X) \wedge_{\Sigma(n)} \left( Y/\partial Y \right)^{\wedge_n} \,, \label{ConfSplitsAsSmashProduct}\end{equation} where \begin{displaymath} Conf_n^{ord}(X) \;\coloneqq\; \left( X^{\times_n} \setminus \mathbf{\Delta}_X^n \right)/ \partial(X^n) \end{displaymath} is the ordered configuration space \eqref{DistinguishableConfigurationSpaceJustForX}. This construction, regarded as a [[functor]] from [[pointed topological spaces]] to [[spectra]] \begin{displaymath} \itexarray{ Top^{\ast/} &\longrightarrow& Spectra \\ Z &\mapsto& \Sigma^\infty Conf^{ord}_n(X) \wedge_{\Sigma(n)} Z^{\wedge_n} } \end{displaymath} is an [[n-homogeneous (∞,1)-functor]] in the sense of [[Goodwillie calculus]], and hence the partial [[wedge sums]] as $n$ ranges \begin{equation} Z \;\mapsto\; \underset{k \in \{1, \cdot, n\}}{\bigoplus} \Sigma^\infty Conf^{ord}_k(X) \wedge_{\Sigma(k)} Z^{\wedge_k} \label{IdentifyingTheGoodwillieTaylorStage}\end{equation} are [[n-excisive (∞,1)-functors]]. Moreover, by the stable splitting of mapping spaces \eqref{StableSplittingOfMappingSpacesOutOfSphere} of Prop. \ref{StableSplittingOfMappingSpacesOutOfEuclideanSpace}, there is a [[projection]] morphism onto the first $n$ [[wedge sum|wedge summands]] \begin{equation} \itexarray{ Maps_{cp}(\mathbb{R}^d, \Sigma^d Z) &=& Maps^{\ast/}( S^d, \Sigma^d Z) &\simeq& \underset{k \in \mathbb{N}}{\oplus} \Sigma^\infty Conf^{ord}_k(\mathbb{R}^d) \wedge_{\Sigma(k)} Z^{\wedge_k} \\ && && \Big\downarrow {}^{\mathrlap{ p_n }} \\ && && \underset{k \in \{1, \cdot, n\}}{\bigoplus} \Sigma^\infty Conf^{ord}_k( \mathbb{R}^d ) \wedge_{\Sigma(k)} Z^{\wedge_k} } \label{ProjectionMaps}\end{equation} and this is [[n-connected morphism|(n+1)k-connected]] when $Z$ is [[n-connected object|k-connected]]. By [[Goodwillie calculus]] this means that \eqref{IdentifyingTheGoodwillieTaylorStage} are, up to [[equivalence in an (infinity,1)-category|equivalence]], the stages \begin{equation} P_n Maps^{\ast/}( S^d, \Sigma^d (-)) \;\colon\; Z \mapsto \underset{k \in \{1, \cdot, n\}}{\bigoplus} \Sigma^\infty Conf^{ord}_k(S^d, Z) \label{TheGoodwillieStagesOfTheMappingSpaceFunctor}\end{equation} at $Z \in Top^{\ast/}$ of the [[Goodwillie-Taylor tower]] for the [[mapping space]]-functor \begin{displaymath} Maps_{cp}(\mathbb{R}^d, \Sigma^d (-)) = Maps^{\ast/}( S^d, \Sigma^d (-)) \;\colon\; Top^{\ast/} \longrightarrow Top^{\ast/} \,. \end{displaymath} Therefore the stable splitting theorem \ref{StableSplittingOfMappingSpacesOutOfEuclideanSpace} may equivalently be read as expressing the mapping space functor equivalently as the [[limit]] over its [[Goodwillie-Taylor tower]]. (\hyperlink{Arone99}{Arone 99, p. 1-2}, \hyperlink{Goodwillie03}{Goodwillie 03, p. 6}) $\,$ \hypertarget{lax_closed_structure_on_}{}\subsubsection*{{Lax closed structure on $\Sigma^\infty$}}\label{lax_closed_structure_on_} Notice that the first stage in the [[Goodwillie-Taylor tower]] of $Maps(S^d, \Sigma^d(-))$ is \begin{displaymath} \begin{aligned} P_1 Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y) ) & = \Sigma^\infty Conf^{ord}_1( \mathbb{R}^d , Y ) \\ & \simeq \Sigma^\infty \underset{\simeq S^0}{\underbrace{Conf^{ord}_1( \mathbb{R}^d )}} \wedge (Y/\partial Y) \\ & \simeq \Sigma^\infty (Y/\partial Y) \\ & \simeq \Omega^d \Sigma^d \Sigma^\infty (Y/\partial Y) \\ & \simeq Maps\left( \Sigma^\infty S^d, \Sigma^d (Y/\partial Y) \right) \end{aligned} \end{displaymath} Here in the first step we used \eqref{TheGoodwillieStagesOfTheMappingSpaceFunctor}, in the second step we used \eqref{ConfSplitsAsSmashProduct}. Under the brace we observe that space of configurations of a single point in $\mathbb{R}^d$ is trivially $\mathbb{R}^d$ itself, which is [[contractible topological space|contractible]] $\mathbb{R}^d \simeq \ast$ and, due to [[empty set|empty]] [[boundary]] of $\mathbb{R}^d$, contributes a [[0-sphere]]-factor to the [[smash product]], which disappears. In the last last two steps we trivially rewrote the result to exhibit it as a [[mapping spectrum]]. Therefore the projection $p_1$ \eqref{ProjectionMaps} to the first stage of the [[Goodwillie-Taylor tower]] is of the form \begin{displaymath} p_1 \;\colon\; \Sigma^\infty Maps\left( S^d , \Sigma^d (Y /\partial Y) \right) \longrightarrow Maps \left( \Sigma^\infty S^d, \Sigma^\infty \Sigma^d (Y / \partial Y) \right) \,. \end{displaymath} Since $\Sigma^\infty$ is a [[strong monoidal functor]] (\href{suspension+spectrum#StrongMonoidalness}{here}), there is a canonical comparison morphism of this form, exhibiting the induce [[closed functor|lax closed]]-structure on $\Sigma^\infty$. Probably $p_1$ coincides with that canonical morphism, up to equivalence. \begin{quote}% Does it? \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[mapping spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The theorem is originally due to \begin{itemize}% \item [[Victor Snaith]], \emph{A stable decomposition of $\Omega^n S^n X$}, Journal of the London Mathematical Society 7 (1974), 577 - 583 (\href{https://www.maths.ed.ac.uk/~v1ranick/papers/snaiths.pdf}{pdf}) \end{itemize} using the homotopy equivalence before stabilization due to \begin{itemize}% \item [[Peter May]], \emph{The geometry of iterated loop spaces}, Springer 1972 (\href{https://www.math.uchicago.edu/~may/BOOKS/geom_iter.pdf}{pdf}) \item [[Graeme Segal]], \emph{Configuration-spaces and iterated loop-spaces}, Invent. Math. \textbf{21} (1973), 213--221. MR 0331377 (\href{http://dodo.pdmi.ras.ru/~topology/books/segal.pdf}{pdf}) \end{itemize} An alternative proof is due to \begin{itemize}% \item [[Ralph Cohen]], \emph{Stable proof of stable splittings}, Math. Proc. Camb. Phil. Soc., 1980, 88, 149 (\href{https://doi.org/10.1017/S030500410005742X}{doi:10.1017/S030500410005742X}, \href{https://www.cambridge.org/core/services/aop-cambridge-core/content/view/247D9F951F8AB99000E4FF6CB2DB9EA2/S030500410005742Xa.pdf/div-class-title-stable-proofs-of-stable-splittings-div.pdf}{pdf}) \end{itemize} Review and generalization is due to \begin{itemize}% \item [[Carl-Friedrich Bödigheimer]], \emph{Stable splittings of mapping spaces}, Algebraic topology. Springer 1987. 174-187 (\href{http://www.math.uni-bonn.de/~cfb/PUBLICATIONS/stable-splittings-of-mapping-spaces.pdf}{pdf}) \end{itemize} Interpretation in terms of the [[Goodwillie-Taylor tower]] of mapping spaces is due to \begin{itemize}% \item [[Greg Arone]], \emph{A generalization of Snaith-type filtration}, Transactions of the American Mathematical Society 351.3 (1999): 1123-1150. (\href{https://www.ams.org/journals/tran/1999-351-03/S0002-9947-99-02405-8/S0002-9947-99-02405-8.pdf}{pdf}) \item [[Michael Ching]], \emph{Calculus of Functors and Configuration Spaces}, Conference on Pure and Applied Topology Isle of Skye, Scotland, 21-25 June, 2005 (\href{https://www3.amherst.edu/~mching/Work/skye.pdf}{pdf}) \item [[Thomas Goodwillie]], p. 6 of \emph{Calculus. III. Taylor series}, Geom. Topol. 7 (2003), 645--711 (\href{http://www.msp.warwick.ac.uk/gt/2003/07/p019.xhtml}{journal}, \href{http://arxiv.org/abs/math/0310481}{arXiv:math/0310481})) \end{itemize} Generalization via [[nonabelian Poincaré duality]] from [[codomains]] which are $n$-fold [[suspensions]] to general [[n-connective spaces]]: \begin{itemize}% \item Lauren Bandklayder, \emph{Stable splitting of mapping spaces via nonabelian Poincaré duality} (\href{https://arxiv.org/abs/1705.03090}{arxiv:1705.03090}) \end{itemize} [[!redirects stable splittings of mapping spaces]] \end{document}