\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stable unitary group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classifying_space_for_topological_ktheory}{Classifying space for topological K-theory}\dotfill \pageref*{classifying_space_for_topological_ktheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{BUn}\hypertarget{BUn}{} For $n \in \mathbb{N}$ write $U(n)$ for the [[unitary group]] in dimension $n$ and $O(n)$ for the [[orthogonal group]] in dimension $n$, both regarded as [[topological group]]s in the standard way. Write $B U(n) , B O(n) \in$ [[Top]] for the corresponding [[classifying space]]. Write \begin{displaymath} [X, B O(n)] := \pi_0 Top(X, B O(n)) \end{displaymath} and \begin{displaymath} [X, B U(n)] := \pi_0 Top(X, B U(n)) \end{displaymath} for the set of [[homotopy]]-classes of [[continuous function]]s $X \to B U(n)$. \end{defn} \begin{prop} \label{BUnClassifyingSpace}\hypertarget{BUnClassifyingSpace}{} This is equivalently the set of [[isomorphism]] classes of $O(n)$- or $U(n)$-[[principal bundles]] on $X$ as well as of rank-$n$ real or complex [[vector bundles]] on $X$, respectively: \begin{displaymath} [X, B O(n)] \simeq O(n) Bund(X) \simeq Vect_{\mathbb{R}}(X,n) \,, \end{displaymath} \begin{displaymath} [X, B U(n)] \simeq U(n) Bund(X) \simeq Vect_{\mathbb{C}}(X,n) \,. \end{displaymath} \end{prop} \begin{defn} \label{InclusionOfUns}\hypertarget{InclusionOfUns}{} For each $n$ let \begin{displaymath} U(n) \to U(n+1) \end{displaymath} be the inclusion of [[topological group]]s given by inclusion of $n \times n$ [[matrices]] into $(n+1) \times (n+1)$-matrices given by the block-diagonal form \begin{displaymath} \left[g\right] \mapsto \left[ \itexarray{ 1 & [0] \\ [0] & [g] } \right] \,. \end{displaymath} This induces a corresponding sequence of morphisms of classifying spaces, def. \ref{BUn}, in [[Top]] \begin{displaymath} B U(0) \hookrightarrow B U(1) \hookrightarrow B U(2) \hookrightarrow \cdots \,. \end{displaymath} Write \begin{displaymath} B U := {\lim_{\to}}_{n \in \mathbb{N}} B U(n) \end{displaymath} for the [[homotopy colimit]] (the ``homotopy [[direct limit]]'') over this diagram (see at \emph{[[homotopy colimit]]} the section \emph{\href{homotopy+limit#SequentialHocolims}{Sequential homotopy colimits}}). \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[topological space]] $B U$ is \textbf{not} equivalent to $B U(\mathcal{H})$, where $U(\mathcal{H})$ is the [[unitary group]] on a separable infinite-dimensional [[Hilbert space]] $\mathcal{H}$. In fact the latter is [[contractible]], hence has a [[weak homotopy equivalence]] to the point \begin{displaymath} B U(\mathcal{H}) \simeq * \end{displaymath} while $B U$ has nontrivial [[homotopy group]]s in arbitrary higher degree (by [[Kuiper's theorem]]). But there is the group $U(\mathcal{H})_{\mathcal{K}} \subset U(\mathcal{H})$ of unitary operators that differ from the [[identity]] by a [[compact operator]]. This is essentially $U = \Omega B U$. See \hyperlink{Uk}{below}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{classifying_space_for_topological_ktheory}{}\subsubsection*{{Classifying space for topological K-theory}}\label{classifying_space_for_topological_ktheory} \begin{prop} \label{}\hypertarget{}{} Write $\mathbb{Z}$ for the set of [[integers]] regarded as a [[discrete topological space]]. The product spaces \begin{displaymath} B O \times \mathbb{Z}\,,\;\;\;\;\;B U \times \mathbb{Z} \end{displaymath} are [[classifying spaces]] for real and complex [[topological K-theory]], respectively: for every compact Hausdorff topological space $X$, we have an isomorphism of groups \begin{displaymath} \tilde K(X) \simeq [X, B U ] \,. \end{displaymath} \begin{displaymath} K(X) \simeq [X, B U \times \mathbb{Z}] \,. \end{displaymath} \end{prop} See for instance (\hyperlink{Friedlander}{Friedlander, prop. 3.2}) or (\hyperlink{Karoubi}{Karoubi, prop. 1.32, theorem 1.33}). \begin{proof} First consider the statement for reduced cohomology $\tilde K(X)$: Since a [[compact topological space]] is a [[compact object]] in [[Top]] (and using that the [[classifying space]]s $B U(n)$ are (see there) [[paracompact topological space]]s, hence normal, and since the inclusion morphisms are closed inclusions (\ldots{})) the [[hom-functor]] out of it commutes with the [[filtered colimit]] \begin{displaymath} \begin{aligned} Top(X, B U) &= Top(X, {\lim_\to}_n B U(n)) \\ & \simeq {\lim_\to}_n Top(X, B U (n)) \end{aligned} \,. \end{displaymath} Since $[X, B U(n)] \simeq U(n) Bund(X)$, in the last line the colimit is over [[vector bundle]]s of all ranks and identifies two if they become isomorphic after adding a trivial bundle of some finite rank. For the full statement use that by prop. \ref{missing} we have \begin{displaymath} K(X) \simeq H^0(X, \mathbb{Z}) \oplus \tilde K(X) \,. \end{displaymath} Because $H^0(X,\mathbb{Z}) \simeq [X, \mathbb{Z}]$ it follows that \begin{displaymath} H^0(X, \mathbb{Z}) \oplus \tilde K(X) \simeq [X, \mathbb{Z}] \times [X, B U] \simeq [X, B U \times \mathbb{Z}] \,. \end{displaymath} \end{proof} There is another variant on the classifying space \begin{defn} \label{Uk}\hypertarget{Uk}{} Let \begin{displaymath} U_{\mathcal{K}} = \left\{ g \in U(\mathcal{H}) | g - id \in \mathcal{K} \right\} \end{displaymath} be the group of unitary operators on a [[separable Hilbert space]] $\mathcal{H}$ which differ from the identity by a [[compact operator]]. \end{defn} Palais showed that \begin{prop} \label{}\hypertarget{}{} $U_\mathcal{K}$ is a [[homotopy equivalence|homotopy equivalent]] model for $B U$. It is in fact the [[norm closure]] of the evident model of $B U$ in $U(\mathcal{H})$. Moreover $U_{\mathcal{K}} \subset U(\mathcal{H})$ is a [[Banach Lie group|Banach Lie]] [[normal subgroup]]. \end{prop} Since $U(\mathcal{H})$ is [[contractible]], it follows that \begin{displaymath} B U_{\mathcal{K}} \coloneqq U(\mathcal{H})/U_{\mathcal{K}} \end{displaymath} is a model for the [[classifying space]] of reduced K-theory. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stable orthogonal group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Introductions are in \begin{itemize}% \item [[Allen Hatcher]], \emph{Vector bundles and K-theory} (\href{http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \item [[Eric Friedlander]], \emph{An introduction to K-theory} (\href{http://users.ictp.it/~pub_off/lectures/lns023/Friedlander/Friedlander.pdf}{pdf}) \item [[Max Karoubi]], \emph{K-theory: an introduction} \item [[H. Blaine Lawson]], [[Marie-Louise Michelsohn]], \emph{[[Spin geometry]]}, Princeton University Press (1989) \end{itemize} The [[H-space]] structure on $B U \times \mathbb{Z}$ is discussed in \begin{itemize}% \item [[Peter May]], p. 205 (213 of 251 in \emph{[[A Concise Course in Algebraic Topology]]}. \end{itemize} [[!redirects stable unitary groups]] \end{document}