\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{provisional_discussion}{Provisional discussion}\dotfill \pageref*{provisional_discussion} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \emph{stack}, is a traditional synonym for \emph{[[2-sheaf]]} or often just \emph{[[(2,1)-sheaf]]} (see there for more details). It is also often used more restrictively as a synonym for \emph{[[(2,1)-sheaf]].} This is part of a whole hierarchy of [[higher category theory|higher categorical]] generalizations of the notion of \emph{[[sheaf]]}. A [[(2,1)-sheaf]] / stack is equivalently a [[1-truncated]] [[(∞,1)-sheaf]]/[[∞-stack]]. Generally, then, \emph{[[n-stack]]} is a synonym for \emph{[[n-sheaf|(n+1)-sheaf]]}, or more restrictively for \emph{[[(n,1)-sheaf|(n+1,1)-sheaf]]}. More concretely this means that a 1-stack on a [[site]] $S$ (or more generally [[(2,1)-site]] or even [[(2,2)-site]] $S$) is \begin{itemize}% \item a ([[pseudofunctor|pseudo]]-)[[functor]] from $S^{op}$ to the 2-category [[Cat]] of categories, \item that satisfies [[descent]] for all covers. \end{itemize} If the pseudofunctor takes values in the 2-subcategory [[Grpd]]$\subset Cat$ of groupoids, the stack is sometimes referred to as a stack of groupoids. This is the more commonly occurring case so the term `stack' has come to mean `stack of groupoids' in much of the literature. In some circles the notion of a stack as a generalized [[groupoid]] is almost more familiar than the notion of sheaf as a [[space and quantity|generalized space]]. For instance [[differentiable stacks]] have attracted much attention in the study of [[Lie groupoids]] and [[orbifolds]], while [[diffeological space]]s are only beginning to be investigated more in [[Lie theory]]. Groupoid stacks are closely related to internal groupoids \href{https://mathoverflow.net/questions/93948/link-between-internal-groupoids-and-stacks-on-a-topos}{MO}. An [[algebraic stack]], [[differentiable stack]] etc. is a stack over a site of schemes or differentiable manifolds with additional representability conditions. \hypertarget{provisional_discussion}{}\subsection*{{Provisional discussion}}\label{provisional_discussion} The following is ``provisional'' material on stacks that [[Todd Trimble]] wrote in the course of a discussion with [[Urs Schreiber|Urs]]. Somebody should turn this here into a coherent entry on stacks. \vspace{.5em} \hrule \vspace{.5em} (Todd speaking.) I don't really speak ``stacks'', but in an effort to build a bridge between sheaves and stacks, I'll write down what I thought I understood, and ask someone such as Urs to come in and check. (Warning: I'm treating this edit box almost as a sandbox, in that what I say below is all a bit provisional until we get some discussion going.) Hi Todd, thanks for this. I started making some remarks on the relation between descent $\infty$-categories and pseudofunctors from [[covers]] regarded as [[sieves]] (hence as presheaves) at [[descent and codescent]] in the section titled \emph{Descent in terms of pseudo-functors}. At the simplest level, let $C$ be a category. As we know, a presheaf on $C$ is just a functor $X: C^{op} \to Set$. Now let's categorify just once: regard a category $C$ as a bicategory whose local hom-categories are discrete. What I'll call a ``pre-stack'' is then a homomorphism of bicategories $X: C^{op} \to Cat$. Here I'm following Street's terminology: a homomorphism of bicategories is the ``pseudo'' version of a weak map of bicategories, as opposed to the ``lax'' version. So, we have given coherent isomorphisms $X(f)X(g) \to X(f g)$, and so on. Now suppose that $C$ also comes equipped with a topology $J$, and let $F$ be a $J$-covering sieve for $c$, so that in particular it's a subfunctor $i: F \hookrightarrow \hom(-, c)$. We want to build a (truncated) simplicial object out of this, and to this end I'll use some yoga which was basically developed in my Cafe post \href{http://golem.ph.utexas.edu/category/2007/05/on_the_bar_construction.html}{on the bar construction} perhaps this may go partway to addressing your most recent \href{http://golem.ph.utexas.edu/category/2007/05/on_the_bar_construction.html#c021027}{query} there, Urs. Namely, there is a canonical way of presenting $F$ as a colimit of representables. Officially, it's given by a coend formula, but it's probably more illuminating to think of it in terms of tensor products over $C$: \begin{displaymath} \hom_C(-, -) \otimes_C F(-) \cong F(-) \end{displaymath} In the long-winded version, this says that $F$ is the coequalizer of a diagram having the form \begin{displaymath} \sum_{c, d} \hom_C(-, c) \times \hom_C(c, d) \times F(d) \stackrel{\to}{\to} \sum_c \hom_C(-, c) \times F(c) \to F(-) \end{displaymath} where the more visible one of the two parallel arrows involves the contravariant action of $C$ on $F$: \begin{displaymath} \hom(c, d) \times F(d) \to F(c) \end{displaymath} and the less visible one uses $C$ acting on itself: \begin{displaymath} \hom(-, c) \times \hom(c, d) \times F(d) \to hom(-, d) \times F(d) \end{displaymath} The point now is that this coequalizer diagram represents the tail end of a simplicial object (with $F(-)$ appearing in dimension -1), which in the notation of the bar construction one could call $B(C, C, F)$. Let me explain this last bit. The point is that any category $C$ can be regarded as a monad in the bicategory of spans. The underlying span is of course \begin{displaymath} C_0 \stackrel{dom}{\leftarrow} C_1 \stackrel{cod}{\to} C_0 \end{displaymath} and a presheaf $F$ on $C$, as a discrete op-fibration, has an underlying span \begin{displaymath} C_0 \leftarrow F \to 1 \end{displaymath} and is precisely an algebra over the monad $C$. Then, given the data of a monad and an algebra over that monad, one proceeds to build the bar construction as a simplicial object, and I think this is probably the simplicial thingy we want to base the category of descent data on (given a pre-stack $X$). In fact, if memory serves the category of descent data can be efficiently expressed in bicategorical language as follows. The covering sieve $F$ becomes a homomorphism of bicategories by changing base from $Set$ to $Cat$: \begin{displaymath} C^{op} \stackrel{F}{\to} Set \stackrel{discrete}{\to} Cat \end{displaymath} and, abbreviating $discrete$ to $d$, it turns out that \begin{displaymath} Desc_F(X) \simeq Nat(d F, X) \end{displaymath} where the thing on the right side is the category of strong (i.e., pseudo) natural transformations between the indicated bicategory homomorphisms. In that case, the stack condition on $X$ becomes the statement that the canonical functor \begin{displaymath} X(c) \stackrel{Yoneda}{\cong} Nat(d \hom(-, c), X) \to Nat(d F, X) \end{displaymath} (where the first equivalence comes from the bicategorical Yoneda lemma, and the second functor is induced from the subfunctor $i: F \to \hom(-, c)$) is an equivalence for all $J$-covering sieves $F$. This formulation connects up nicely, that is, is a straight categorification of what was put down in the entry [[sheaf]]. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item The stack of $BG$ is a functor $Mfd^{op} \to Gpd$, sending $U\in Mfd$ to the groupoid of $G$-principal bundles over $U$ with $G$-equivariant morphisms; sending $U\xrightarrow{f} V$ to the functor induced by pullbacks of principal bundles via $f$. Then $BG$ comes from the prestack $BG^p: Mfd^{op} \to Gpd$ sending $U\in Mfd$ to the groupoid of trivial principal bundles over $U$ with $G$-equivariant morphisms (then it is just a $G$-valued function $U\xrightarrow{g} G$; sending $U\xrightarrow{f}V$ to the functor induced by pullbacks of principal bundles via $f$. Then sheafification or stackification will give us $BG$ back. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sheaf]] \item [[presheaf of groupoids]] \item [[group stack]] \item [[2-sheaf]] / [[(2,1)-sheaf]] / \textbf{stack} / [[model structure for (2,1)-sheaves]] \begin{itemize}% \item [[representable morphism of stacks]] \item [[mapping stack]], [[quotient stack]] \item [[geometric stack]] \begin{itemize}% \item [[differentiable stack]], [[Deligne-Mumford stack]] \end{itemize} \item [[rigidification of a stack]] \item [[moduli stack]] \item [[Picard stack]] \end{itemize} \item [[(∞,1)-sheaf]] / [[∞-stack]] \end{itemize} Special kinds of stacks include \begin{itemize}% \item [[geometric stacks]]; \item [[gerbes]]. \end{itemize} [[!include homotopy n-types - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Introduction to the language of stacks and gerbes} (\href{http://arxiv.org/abs/math/0212266}{arXiv}) \item [[Jochen Heinloth]], \emph{Some notes on differentiable stacks} (\href{http://www.uni-due.de/~hm0002/stacks.pdf}{pdf}) \end{itemize} The article \begin{itemize}% \item [[Angelo Vistoli]], \emph{Grothendieck topologies, fibered categories and descent theory} \href{http://www.ams.org/mathscinet-getitem?mr=2223406}{MR2223406}; \href{http://arxiv.org/abs/math/0412512}{math.AG/0412512} pp. 1--104 in Barbara Fantechi, Lothar G\"o{}ttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, Angelo Vistoli, \emph{Fundamental algebraic geometry. Grothendieck's [[FGA explained]]}, Mathematical Surveys and Monographs \textbf{123}, Amer. Math. Soc. 2005. x+339 pp. \href{http://www.ams.org/mathscinet-getitem?mr=2007f:14001}{MR2007f:14001} \end{itemize} discusses stacks focusing on their dual incarnation as [[Grothendieck fibration]]s. A [[model category]] structure on [[presheaves of groupoids]], presenting stack the way the [[model structure on simplicial presheaves]] models [[∞-stacks]] is discussed in \begin{itemize}% \item [[Sharon Hollander]], \emph{A homotopy theory for stacks}, Israel Journal of Mathematics, 163(1), 93-124 (\href{http://arxiv.org/abs/math.AT/0110247}{arXiv:math.AT/0110247}) \end{itemize} [[!redirects stack\emph{]] [[!redirects stacks]]} \end{document}