\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{standard Courant algebroid} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_a_vector_bundle_with_extra_structure}{As a vector bundle with extra structure}\dotfill \pageref*{as_a_vector_bundle_with_extra_structure} \linebreak \noindent\hyperlink{as_a_dgmanifold}{As a dg-manifold}\dotfill \pageref*{as_a_dgmanifold} \linebreak \noindent\hyperlink{as_a_lie_2algebroid}{As a Lie 2-algebroid}\dotfill \pageref*{as_a_lie_2algebroid} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_the_atiyah_lie_2algebroid_of_a_gerbe}{As the Atiyah Lie 2-algebroid of a $U(1)$-gerbe}\dotfill \pageref*{as_the_atiyah_lie_2algebroid_of_a_gerbe} \linebreak \noindent\hyperlink{connections_and_generalized_riemannian_metrics}{Connections and generalized Riemannian metrics}\dotfill \pageref*{connections_and_generalized_riemannian_metrics} \linebreak \noindent\hyperlink{canonical_lie_algebroid_3cocycle}{Canonical $\infty$-Lie algebroid 3-cocycle}\dotfill \pageref*{canonical_lie_algebroid_3cocycle} \linebreak \noindent\hyperlink{morphisms_between_standard_courant_algebroids}{Morphisms between standard Courant algebroids}\dotfill \pageref*{morphisms_between_standard_courant_algebroids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{standard Courant Lie algebroid} of a [[manifold]] $X$ is a type of [[Courant algebroid]] constructed from the [[tangent bundle]] and [[cotangent bundle]] of $X$. This is the principal algebraic structure studied in [[generalized complex geometry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall from the discussion at [[Courant algebroid]] that there are the following two equivalent definitions of Courant algebroids: \begin{itemize}% \item as a [[vector bundle]] equipped with a bracket and a bilinear form on its space of sections, satisfying various identities; \item as a [[L-infinity algebroid|Lie 2-algebroid]] equivalently encoded in its [[Chevalley?Eilenberg algebra]], equivalently the function algebra on a certain type of [[dg-manifolds]]. \end{itemize} \hypertarget{as_a_vector_bundle_with_extra_structure}{}\subsubsection*{{As a vector bundle with extra structure}}\label{as_a_vector_bundle_with_extra_structure} In the first perspective a \emph{standard Courant algebroid} of a [[manifold]] $X$ is the vector bundle $E = T X\oplus T^* X$ -- the fiberwise [[direct sum]] of the [[tangent bundle]] and the cotangent bundle -- with \begin{itemize}% \item bilinear form \begin{displaymath} \langle X + \xi , Y +\eta \rangle = \eta(X) + \xi(Y) \end{displaymath} for $X,Y \in \Gamma(T X)$ and $\xi, \eta \in \Gamma(T^* X)$ \item brackets \begin{displaymath} [X + \xi, Y + \eta] = [X,Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} d (\eta(X) - \xi(Y)) \end{displaymath} where $\mathcal{L}_X \eta = \{d,\iota_X\} \eta$ denotes the [[Lie derivative]] of the 1-form $\eta$ by the vector field $X$. \end{itemize} \hypertarget{as_a_dgmanifold}{}\subsubsection*{{As a dg-manifold}}\label{as_a_dgmanifold} As an [[dg-manifold]] a standard Courant algeebroid is is $\Pi T^* \Pi T X$, the shifted cotangent bundle of the [[shifted tangent bundle]], where the differential (homological vector field) is on each local coordinate patch $\mathbb{R}^n \simeq U \subset X$ with coordinates \begin{itemize}% \item $\{x^i\}$ in degree 0 \item $\{d x^i\}$ and $\{\theta_i\}$ in degree 1 \item and $\{p_i\}$ in degree 2 \end{itemize} given by \begin{displaymath} \begin{aligned} d_C &= d_{dR} + p_i \frac{\partial}{\partial \theta_i} \\ &= d x^i \frac{\partial}{\partial x^i } + p_i \frac{\partial}{\partial \theta_i} \end{aligned} \,. \end{displaymath} \hypertarget{as_a_lie_2algebroid}{}\subsubsection*{{As a Lie 2-algebroid}}\label{as_a_lie_2algebroid} We may read the above [[dg-algebra]] as the [[Chevalley?Eilenberg algebra]] $CE(\mathfrak{c}(X))$ of the [[Lie ∞-algebroid|Lie 2-algebroid]] $\mathfrak{c}(X)$, the specification of which entirely specifies the Lie 2-algebroid itself. More on this in the discussion below. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_the_atiyah_lie_2algebroid_of_a_gerbe}{}\subsubsection*{{As the Atiyah Lie 2-algebroid of a $U(1)$-gerbe}}\label{as_the_atiyah_lie_2algebroid_of_a_gerbe} A standard Courant algebroid may be understood as being related to $\mathbf{B}U(1)$ [[principal 2-bundle]]s ($U(1)$-[[gerbe]]s) as an [[Atiyah Lie algebroid]] is related to a $U(1)$-[[principal bundle]]. (\ldots{}explain\ldots{}) \hypertarget{connections_and_generalized_riemannian_metrics}{}\subsubsection*{{Connections and generalized Riemannian metrics}}\label{connections_and_generalized_riemannian_metrics} Write $\mathfrak{c}(X)$ for the standard Courant algebroid of the manifold $X$. It comes canonically equipped with a projection down to the [[tangent Lie algebroid]] $T X$ of $X$: \begin{displaymath} \pi : \mathfrak{c}(X) \to X \,. \end{displaymath} A [[section]] \begin{displaymath} \sigma : T X \to \mathfrak{c}(X) \end{displaymath} of this morphism of [[Lie ∞-algebroid]]s is often called a \emph{connection} on $\mathfrak{c}(X)$. One may regard it as being special flat [[schreiber:∞-Lie algebroid valued differential forms|∞-Lie algebroid valued differential form]] data on $X$. \begin{uprop} On base manifolds of the form $X = \mathbb{R}^n$ sections of $\mathfrak{c}(X) \to T X$ in the 1-[[category]] of [[Lie ∞-algebroid]]s are in natural bijection with rank-2 tensor fields on $X$, i.e. with sections $q \in \Gamma(T X \oplus T X)$. \end{uprop} The proof is straightforward and easy, but spelling it out in detail also serves to establish concepts and notation for the treatment of the Courant algebroid in terms of its [[Chevalley?Eilenberg algebra]]. \begin{proof} The [[Chevalley?Eilenberg algebra]] of the Lie 2-algebroid $\mathfrak{c}(\mathbb{R}^n)$ is the [[semifree dga]] whose underlying algebra is the [[Grassmann algebra]] \begin{displaymath} CE(\mathfrak{c}(X)) = \left( \wedge_{C^\infty(X)}^\bullet ( \langle \xi^i \rangle_{i=1}^n \oplus \langle \theta_i \rangle_{i=1}^n \oplus \langle p_i \rangle_{i=1}^n ) \,, d_{\mathfrak{c}(X)} \right) \end{displaymath} where the generators $\xi_i$ and $\theta_i$ are in degree 1 and the $p_i$ in degree 2, equipped with the differential $d_{\mathfrak{c}(X)}$ that is defined on generators by \begin{displaymath} d_{\mathfrak{c}(X)} : x^i = \xi^i \end{displaymath} \begin{displaymath} d_{\mathfrak{c}(X)} : \xi^i = 0 \end{displaymath} \begin{displaymath} d_{\mathfrak{c}(X)} : \theta_i = p_i \end{displaymath} \begin{displaymath} d_{\mathfrak{c}(X)} : p_i = 0 \, \end{displaymath} where $\{x^i\}_{i=1}^n$ are the canonical coordinate functions on $\mathbb{R}^n$. The [[Chevalley?Eilenberg algebra]] of the [[tangent Lie algebroid]] $T X$ is the [[deRham complex]] \begin{displaymath} CE(T X ) = (\Omega^\bullet(X), d_{dR}) \,. \end{displaymath} The morphism $\mathfrak{c}(X) \to T X$ is given by the [[dg-algebra]] morphism \begin{displaymath} (\Omega^\bullet(X),d_{dR}) \hookrightarrow CE(\mathfrak{c}(X)) \end{displaymath} that is the identity on $C^\infty(X)$ and identifies the $\xi^i$ with the deRham differentials of the standard coordinate functions \begin{displaymath} d x^i \mapsto \xi^i \,. \end{displaymath} A section $\sigma : \mathfrak{c}(X) \to T X$ is accordingly a dg-algebra morphism \begin{displaymath} \sigma^* : CE(\mathfrak{c}(X)) \to (\Omega^\bullet(X), d_{dR}) \,. \end{displaymath} Being a section, it has to be the identity on $C^\infty(X)$ and send $\xi^i \mapsto d_{dR} x^i$. The image of the generators $\theta_i$, being of degree 1, must be a linear combination over $C^\infty(X)$ of the degree-1 elements in $\Omega^\bullet(X)$, i.e. must be 1-forms on $X$. This defines the rank-2 tensor $q$ in question by \begin{displaymath} \hat{t}_i \mapsto q_{i j} \d x^i \,. \end{displaymath} For this assignment to qualify as part of a morphism of dg-algebras, it has in addition to be compatible with the differential. The condition is that for all $i$ we have the equality in the bottom right corner of \begin{displaymath} \itexarray{ \theta_i &\stackrel{d_{\mathfrak{c}(X)}}{\mapsto}&& p_i \\ \downarrow^{\mathrlap{\sigma^*}} &&& \downarrow^{\mathrlap{\sigma^*}} \\ q_{i j} d x^j &\stackrel{d_{dR}}{\mapsto}& (\partial_k q_{i j}) d x^k \wedge d x^j = & s^*(p_i) } \,. \end{displaymath} This uniquely fixes the image under $\sigma^*$ of the generators $p_i$ and the differential is respected. So, indeed, the section $\sigma^*$ is specified by the tensor $q \in \Gamma(T X \otimes T X)$ and every such tensor gives rise to a section. \end{proof} The rank-2 tensor $q$ appearing in the above may be uniquely writtes as sum of a symmetric and a skew-symmetric rank-2 tensor $g \Gamma(Sym^2(T X))$ and $b \in \Gamma(\wedge^2 T X)$ \begin{displaymath} q = g + b \,. \end{displaymath} If the symmetric part happens to be non-degenerate, it may be regarded as a (possibly [[pseudo-Riemannian metric|pseudo]]-)[[Riemannian metric]]. In this case the combination $q = g + b$ is called a \textbf{generalized Riemannian metric} in [[generalized complex geometry]]. \hypertarget{canonical_lie_algebroid_3cocycle}{}\subsubsection*{{Canonical $\infty$-Lie algebroid 3-cocycle}}\label{canonical_lie_algebroid_3cocycle} The standard Courant albebroid $\mathfrak{c}(X)$ is canonically equipped with the [[Lie ∞-algebroid cohomology|Lie ∞-algebroid 3-cocycle]] $\mu \in CE(\mathfrak{c}(X))$ that is on a local patch $\mathbb{R}^n \simeq U \to X$ given by \begin{displaymath} \mu|_U = \xi^i \wedge p_i \,. \end{displaymath} \hypertarget{morphisms_between_standard_courant_algebroids}{}\subsubsection*{{Morphisms between standard Courant algebroids}}\label{morphisms_between_standard_courant_algebroids} \begin{uprop} In the 1-[[category]] of [[Lie ∞-algebroid]]s, [[automorphism]]s of the standard Courant algebroid of a cartesian space, $\mathfrak{c}(\mathbb{R}^n)$, that \begin{itemize}% \item respect the projection $\mathfrak{c}(X) \to T X$ \begin{displaymath} \itexarray{ \mathfrak{c}(X) &&\stackrel{f}{\to}&& \mathfrak{c}(X) \\ & \searrow && \swarrow \\ && T X } \end{displaymath} \item fix the canonical 3-cocycle $\mu = \xi^i p_i$ \end{itemize} come from (\ldots{}say this more precisely\ldots{}) rank-2 tensors $q = g + b$ such that the skew symmetric part $b$ is a closed 2-form, $d_{dR} b = 0$. \end{uprop} \begin{proof} With the same kind of reasoning as above, we find that the action on the generators $\theta_i$ and $p_i$ is of the form \begin{displaymath} \itexarray{ \theta_i &\stackrel{d_{\mathfrak{c}(X)}}{\mapsto}&& p_i \\ \downarrow^{\mathrlap{f^*}} &&& \downarrow^{\mathrlap{f^*}} \\ \theta_i + q_{i j} \theta^i & \stackrel{d_{\mathfrak{c}(X)}}{\mapsto}& p_i + \partial_k q_{i j} \theta^k \wedge \theta^j = & f^*(p_i) } \,. \end{displaymath} For the 3-cocycle to be preserved, $f^*(\xi^i p_i) = \xi^i p_i$ we need that \begin{displaymath} 0 = \partial_k q_{i j} \theta^i \wedge \theta^k \wedge \theta^j = \partial_k b_{i j} \theta^i \wedge \theta^k \wedge \theta^j = \pi^*(d_{dR} b) \,. \end{displaymath} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[higher Atiyah groupoid]] \begin{itemize}% \item [[Atiyah groupoid]] \item [[Courant 2-groupoid]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The description of the standard Courant algebroid in its incarnation as an [[dg-manifold]] is given for instance in section 5 of \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{On the structure of graded symplectic supermanifolds and Courant algebroids} (\href{http://arxiv.org/abs/math/0203110}{arXiv:0203110}) \end{itemize} [[!redirects standard Courant Lie 2-algebroid]] \end{document}