\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{star-autonomous category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{functors_and_transformations}{Functors and transformations}\dotfill \pageref*{functors_and_transformations} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InternalLogic}{Internal logic}\dotfill \pageref*{InternalLogic} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are many ways to describe a $*$-autonomous category; here are a few: \begin{itemize}% \item it is a [[monoidal category]] in which all objects have ``duals'', but in a weaker sense than in a [[compact closed category]]. \item it is a [[closed monoidal category]] in which the [[internal-hom]] can be expressed in terms of the tensor product in a particular way. \item it is a [[linearly distributive category]] in which all objects have ``duals'' in an appropriate linearly distributive sense. \item it is a semantics for classical multiplicative [[linear logic]]. \item it is a representable [[star-polycategory]]. \item it is a sort of categorified [[Frobenius algebra]]. \end{itemize} In particular, it has two monoidal structures $\otimes$ and $\parr$, as in a linearly distributive category. However, because of the dualization operation $(-)^\ast$, each of them determines the other by a ``multiplicative [[de Morgan's laws|de Morgan]] duality'': $A\parr B \cong (A^\ast \otimes B^\ast)^\ast$. Thus, in the definition we only have to refer to one monoidal structure. A $\ast$-autonomous category is a special case of the notion of [[star-autonomous pseudomonoid]] (a.k.a. Frobenius pseudomonoid, since it categorifies a [[Frobenius algebra]]) in a [[monoidal bicategory]]. (Regarding the use of ``autonomous'', this was once used as a bare adjective to describe a [[closed monoidal category]], or sometimes a [[compact closed monoidal category]], but is rarely used in this way today. It has been suggested that in these cases with internal-hom objects the category is autonomous or ``sufficient unto itself'' without needing hom-sets, or suchlike.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are two useful equivalent formulation of the definition \begin{defn} \label{DefByDualizingObject}\hypertarget{DefByDualizingObject}{} A \emph{$*$-autonomous category} is a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] $\langle C,\otimes, I,\multimap\rangle$ with a \emph{[[dualizing object in a closed category|global dualizing object]]}: an object $\bot$ such that the canonical morphism \begin{displaymath} d_A: A \to (A \multimap \bot) \multimap \bot , \end{displaymath} which is the transpose of the [[evaluation map]] \begin{displaymath} ev_{A,\bot}: (A \multimap \bot) \otimes A \to \bot , \end{displaymath} is an [[isomorphism]] for all $A$. (Here, $\multimap$ denotes the [[internal hom]].) \end{defn} \begin{defn} \label{DefByDualization}\hypertarget{DefByDualization}{} A \emph{$*$-autonomous category} is a [[symmetric monoidal category]] $\mathcal{C}$ equipped with a [[full and faithful functor|full and faithful]] [[functor]] \begin{displaymath} (-)^\ast \colon \mathcal{C}^{op} \longrightarrow \mathcal{C} \end{displaymath} such that there is a [[natural isomorphism]] \begin{displaymath} \mathcal{C}(A \otimes B, C^\ast) \simeq \mathcal{C}(A, (B\otimes C)^\ast) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} These two definitions, def. \ref{DefByDualizingObject} and def. \ref{DefByDualization}, are indeed equivalent. \end{prop} \begin{proof} Given def. \ref{DefByDualizingObject}, define the dualization functor as the [[internal hom]] into the [[dualizing object in a closed category|dualizing object]] \begin{displaymath} (-)^ \ast \coloneqq (-)\multimap\bot \,. \end{displaymath} Then the morphism $d_A$ is natural in $A$, so that there is a [[natural isomorphism]] $d:1\Rightarrow(-)^{**}$. We also have \begin{displaymath} \begin{aligned} \hom(A\otimes B,C^*)& = \hom(A\otimes B, C\multimap\bot) \\ & \cong \hom((A\otimes B)\otimes C,\bot) \\ & \cong \hom(A\otimes(B\otimes C), \bot) \\ & \cong \hom(A,(B\otimes C)\multimap\bot) \\ & = \hom(A,(B\otimes C)^*) \end{aligned} \end{displaymath} This yields the structure of def. \ref{DefByDualization}. Conversely, given the latter then the [[dualizing object]] $\bot$ is defined as the dual of the [[tensor unit]] $\bot \coloneqq I^*$. \end{proof} \begin{remark} \label{}\hypertarget{}{} A $\ast$-autonomous category in which the [[tensor product]] is compatible with duality in that there is a [[natural isomorphism]] \begin{displaymath} (A \otimes B)^\ast \simeq A^\ast \otimes B^\ast \end{displaymath} is a [[compact closed category]]. More generally, even if the $\ast$-autonomous category is not compact closed, then by this linear ``[[de Morgan duality]]'' the tensor product induces a second binary operation \begin{displaymath} A \parr B \coloneqq (A^\ast \otimes B^\ast)^\ast \,. \end{displaymath} making it into a [[linearly distributive category]]. Here the notation on the left is that used in [[linear logic]], see below at \emph{\hyperlink{InternalLogic}{Properties -- Internal logic}}. A general $\ast$-autonomous category can be thought of as like a [[compact closed category]] in which the [[unit]] and [[counit]] of the [[dual objects]] refer to two different tensor products: we have $\top \to A \parr A^*$ but $A^* \otimes A \to \bot$, where $(\otimes,\top)$ and $(\parr,\bot)$ are two different monoidal structures. The necessary relationship between two such monoidal structures such that this makes sense, i.e. such that the [[triangle identities]] can be stated, is encoded by a linearly distributive category; then an $\ast$-autonomous category is precisely a linearly distributive category in which all such ``mixed duals'' (or ``negations'') exist. \end{remark} \hypertarget{functors_and_transformations}{}\subsection*{{Functors and transformations}}\label{functors_and_transformations} It may not be clear from the above definitions what the appropriate notion of ``$\ast$-autonomous functor'' is. In fact, from at least one perspective it suffices to consider ordinary [[lax monoidal functors]], at least in the symmetric case; no interaction with the $\ast$-autonomy is required. Let $\ast Aut$ denote the full sub-2-category of $SymMonCat_{lax}$ on the (symmetric) $\ast$-autonomous categories; hence its morphisms and 2-cells are lax symmetric monoidal functors and monoidal natural transformations. Let $SymLinDist$ denote the 2-category of symmetric [[linearly distributive categories]], symmetric linear functors, and linear transformations (defined at [[linearly distributive category]]). \begin{utheorem} There is a functor $\ast Aut \to SymLinDist$ that is 2-fully-faithful, i.e. an equivalence on hom-categories, and has both a left and a right [[2-adjoint]]. \end{utheorem} \begin{proof} A linearly distributive functor consists of a functor $F_\otimes$ that is lax monoidal for $\otimes$ and a functor $F_\parr$ that is lax monoidal for $\parr$. Recalling that $\parr$ is defined in a $\ast$-autonomous category as $A\parr B = (A^* \otimes B^*)^*$, if $F$ is a lax monoidal functor between $\ast$-autonomous categories we define $F_\otimes = F$ and $F_\parr(A) = (F(A^*))^*$. See \hyperlink{CockettSeely99}{Cockett-Seely 1999} for details. \end{proof} In the non-symmetric case, we need to additionally require of an ``$\ast$-autonomous functor'' that $^*(F(A^*)) \cong (F({}^*A))^*$, and define $F_\parr$ to be their common value. On the other hand, if we consider instead ``Frobenius linear functors'' between linearly distributive categories, then such functors necessarily preserve duals. Thus, the corresponding notion of $\ast$-autonomous functor would need to preserve the dualization functors as well, $F(A^*) \cong (F(A))^*$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{InternalLogic}{}\subsubsection*{{Internal logic}}\label{InternalLogic} The [[internal logic]] of star-autonomous categories is the multiplicative fragment of [[classical linear logic]], conversely star-autonomous categories are the [[categorical semantics]] of [[classical linear logic]] (\hyperlink{Seely89}{Seely 89, prop. 1.5}). See also at \emph{[[relation between type theory and category theory]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A simple example of a $*$-autonomous category is the category of finite-dimensional [[vector space]]s over some field $k$. In this case $k$ itself plays the role of the dualizing object, so that for an f.d. vector space $V$, $V^*$ is the usual [[dual vector space|dual space]] of linear maps into $k$. \item More generally, any [[compact closed category]] is $*$-autonomous with the unit $I$ as the dualizing object. \item A more interesting example of a $*$-autonomous category is the category of [[sup-lattice]]s and sup-preserving maps (= left adjoints). Clearly the poset of sup-preserving maps $hom(A, B)$ is itself a sup-lattice, so this category is closed. The free sup-lattice on a poset $X$ is the internal hom of posets $[X^{op}, \Omega]$; in particular the poset of truth values $\Omega$ is a unit for the closed structure. Define a duality $(-)^*$ on sup-lattices, where $X^* = X^{op}$ is the opposite poset (inf-lattices are sup-lattices), and where $f^*: Y^* \to X^*$ is the left adjoint of $f^{op}: X^{op} \to Y^{op}$. In particular, take as dualizing object $D = \Omega^{op}$. Some simple calculations show that under the tensor product defined by the formula $(X \multimap Y^*)^*$, the category of sup-lattices becomes a $*$-autonomous category. \item Another interesting example is due to Yuri Manin: the category of [[quadratic algebra]]s. A \textbf{quadratic algebra} over a [[field]] $k$ is a graded algebra $A = T(V)/I$, where $V$ is a finite-dimensional vector space in degree 1, $T(V)$ is the tensor algebra (the free $k$-algebra generated by $V$), and $I$ is a graded ideal generated by a subspace $R \subseteq V \otimes V$ in degree 2; so $R = I_2$, and $A$ determines the pair $(V, R)$. A morphism of quadratic algebras is a morphism of graded algebras; alternatively, a morphism $(V, R) \to (W, S)$ is a linear map $f: V \to W$ such that $(f \otimes f)(R) \subseteq S$. Define the dual $A^*$ of a quadratic algebra given by a pair $(V, R)$ to be that given by $(V^*, R^\perp)$ where $R^\perp \subseteq V^* \otimes V^*$ is the kernel of the transpose of the inclusion $i: R \subseteq V \otimes V$, i.e., there is an exact sequence \begin{displaymath} 0 \to R^\perp \to V^* \otimes V^* \overset{i^*}{\to} R^* \to 0 \end{displaymath} Define a tensor product by the formula \begin{displaymath} (V, R) \otimes (W, S) = (V \otimes W, (1_V \otimes \sigma \otimes 1_W)(R \otimes S)) \end{displaymath} where $\sigma: V \otimes W \to W \otimes V$ is the symmetry. The unit is the tensor algebra on a 1-dimensional space. The hom that is adjoint to the tensor product is given by the formula $A \multimap B = (A \otimes B^*)^*$, and the result is a $*$-autonomous category. \item In a similar vein, I am told that there is a $*$-autonomous category of [[quadratic operad]]s. \item Girard's [[coherence spaces]], developed as models of [[linear logic]], give an historically important example of a $*$-autonomous category. These are closely related to a general construction of $*$-autonomous categories (and related types of categories) called [[poset-valued sets]]. \item The category of [[finiteness spaces]] and their relations is $*$-autonomous. Probably so is any category of [[arity spaces]], which includes coherence spaces and finiteness spaces. \item Hyland and Ong have given a completeness theorem for multiplicative linear logic in terms of a $*$-autonomous category of \emph{fair games}, part of a series of work on game semantics for closed category theory (compare Joyal's interpretation of Conway games as forming a compact closed category). \item The [[Chu construction]] can be used to form many more examples of $*$-autonomous categories. \item Various [[subcategories]] of Chu constructions are also $*$-autonomous. For instance, if [[Vect]] is the category of [[vector spaces]] over a [[field]] $k$, then $Chu(Vect,k)$ is the category of vector spaces equipped with a specified ``dual'' having no further structure than an evaluation map $V\otimes W\to k$. One often wants to impose nondegeneracy conditions on this ``dual'', which in turn can be reflected as [[topological vector space|topological]] properties of the original space $V$. \item A [[quantale]] (see there) is a $\ast$-autonomous category if it has a [[dualizing object]]. \item Suppose $\langle C,\otimes, I,\multimap\rangle$ is a closed symmetric monoidal category equipped with a ``pre-dualizing object'' $\bot$, in the sense that the contravariant self-adjunction $(-\multimap\bot) \dashv (-\multimap\bot)$ is [[idempotent adjunction|idempotent]], i.e. the double-dualization map $A \to (A \multimap \bot) \multimap \bot$ is an isomorphism whenever $A$ is of the form $B\multimap\bot$. (Note that idempotence is automatic if $C$ is a poset.) Then the category of [[fixed point of an adjunction|fixed points]] of this adjunction, i.e. the full subcategory of objects of the form $B\multimap\bot$, is $*$-autonomous. For it is closed under $\multimap$, as $(A\multimap (B\multimap \bot)) \cong (A\otimes B\multimap \bot)$, and reflective with reflector $(-\multimap\bot)\multimap\bot$, and it contains $\bot$ since $\bot\cong (I\multimap \bot)$. Hence it is closed symmetric monoidal with tensor product $((A\otimes B)\multimap\bot)\multimap\bot$, and all its double-dualization maps are isomorphisms by assumption. A historically important example is Girard's [[phase semantics]] of [[linear logic]]. Note that this category is a full subcategory of $Chu(C,\bot)$ closed under duality --- indeed, it is the intersection of the two embeddings of $C$ and $C^{op}$ therein --- but its tensor product is \emph{not} the restriction of the tensor product of $Chu(C,\bot)$. \item Phase semantics is also a special case of a [[ternary frame]], which is the case of the previous example when $\langle C,\otimes, I,\multimap\rangle$ has the [[Day convolution]] structure induced from a [[promonoidal category|promonoidal]] poset. There is also another way to obtain negation in a ternary frame involving a ``compatibility relation''\ldots{} \item The [[unit interval]] $[0,1]$ is a [[semicartesian monoidal category|semicartesian]] $\ast$-autonomous poset with the monoidal structure $x \otimes y = \max(x+y-1,0)$ and dualizing object $0$. The involution is $x^\ast = 1-x$ and the dual [[multiplicative disjunction]] is $x\parr y = \min(x+y,1)$. This is known as [[Lukasiewicz logic]] and is used in [[fuzzy logic]]; it is also a special case of a [[t-norm]]. \item A summary of many different ways to construct examples is in \hyperlink{HylandSchalk01}{Hyland-Schalk}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion is originally due to \begin{itemize}% \item [[Michael Barr]], \emph{$*$-Autonomous Categories}. LNM 752, Springer-Verlag 1979. \end{itemize} See also \begin{itemize}% \item [[Michael Barr]], \emph{Topological $\ast$-autonomous categories, revisited}, rewrite of TAC, 16 (2006), 700-708 (\href{http://arxiv.org/abs/1609.04241}{arXiv:1609.04241}) \end{itemize} The relation to [[linear logic]] was first described in \begin{itemize}% \item [[R. A. G. Seely]], \emph{Linear logic, $\ast$-autonomous categories and cofree coalgebras}, \emph{Contemporary Mathematics} 92, 1989. ([[SeelyLinearLogic.pdf:file]], \href{http://www.math.mcgill.ca/rags/nets/llsac.ps.gz}{ps.gz}) \end{itemize} and a detailed review (also of a fair bit of plain monoidal category theory) is in \begin{itemize}% \item [[Paul-André Melliès]], \emph{Categorial Semantics of Linear Logic}, in \emph{Interactive models of computation and program behaviour}, Panoramas et synth\`e{}ses 27, 2009 (\href{http://www.pps.univ-paris-diderot.fr/~mellies/papers/panorama.pdf}{pdf}) \end{itemize} Examples from algebraic geometry are given here: \begin{itemize}% \item Mitya Boyarchenko and Vladimir Drinfeld, A duality formalism in the spirit of Grothendieck and Verdier, arXiv:1108.6020 (\href{http://arxiv.org/pdf/1108.6020v2.pdf}{pdf}) \end{itemize} These authors call any closed monoidal category with a [[dualizing object in a closed category|dualizing object]] a \textbf{Grothendieck-Verdier category}, thanks to the examples coming from [[Verdier duality]]. Here it is explained how $*$-autonomous categories give Frobenius pseudomonads in the 2-category where morphisms are [[profunctors]]: \begin{itemize}% \item Ross Street, Frobenius monads and pseudomonoids, J. Math. Physics 45 (2004) 3930-3948. (\href{http://www.math.mq.edu.au/~street/Frob.pdf}{pdf}) \end{itemize} Relation to linearly distributive categories: \begin{itemize}% \item [[Robin Cockett]] and [[Robert Seely]], \emph{Linearly distributive functors}, 1999 \href{https://doi.org/10.1016/S0022-4049(98}{doi}00110-8) \end{itemize} A wide-ranging summary of different model constructions: \begin{itemize}% \item [[Martin Hyland]] and [[Andreas Schalk]], \emph{Glueing and orthogonality for models of linear logic}, \href{http://www.cs.man.ac.uk/~schalk/publ/gomll.pdf}{pdf} \end{itemize} [[!redirects star-autonomous categories]] [[!redirects \emph{-autonomous category]] [[!redirects}-autonomous categories]] [[!redirects star-autonomous]] [[!redirects \emph{-autonomous]]} \end{document}