\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{state} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{AlgebraicDefinition}{Algebraic definition}\dotfill \pageref*{AlgebraicDefinition} \linebreak \noindent\hyperlink{in_classical_mechanics}{In classical mechanics}\dotfill \pageref*{in_classical_mechanics} \linebreak \noindent\hyperlink{in_geometric_quantization}{In geometric quantization}\dotfill \pageref*{in_geometric_quantization} \linebreak \noindent\hyperlink{in_hilbertspace_quantum_mechanics}{In Hilbert-space quantum mechanics}\dotfill \pageref*{in_hilbertspace_quantum_mechanics} \linebreak \noindent\hyperlink{in_aqft}{In AQFT}\dotfill \pageref*{in_aqft} \linebreak \noindent\hyperlink{in_fqft}{In FQFT}\dotfill \pageref*{in_fqft} \linebreak \noindent\hyperlink{pure_and_mixed_states}{Pure and mixed states}\dotfill \pageref*{pure_and_mixed_states} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{state} of a system in [[physics]] is\ldots{} In the [[Bayesian interpretation of physics]], the state of a system is not a property of reality but instead indicates an observer's knowledge about the system. A \emph{[[pure state]]} gives maximal information about the system (which amounts to complete information in [[classical mechanics]] but not generally in [[quantum mechanics]]), while a \emph{[[mixed state]]} is more general. A mixed state can be decomposed into a [[probability distribution]] on the space of pure states, although this decomposition is unique only for classical systems. In a frequentist interpretation of probability, a mixed state can describe only a statistical ensemble of systems; the real world is in one (generally unknown) pure state (possibly with additional hidden variables in the quantum case, depending on the interpretation of quantum physics). States in the [[Schrödinger picture]] describe the state of the world at any given time and are subject to [[time evolution]], while in the [[Heisenberg picture]] a single state describes the entire history of the world. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The precise mathematical notion of \emph{state} depends on what mathematical formalization of mechanics is used. \hypertarget{AlgebraicDefinition}{}\subsubsection*{{Algebraic definition}}\label{AlgebraicDefinition} Quite generally, both in [[classical physics]] as well as in [[quantum physics]], one may define states as assignments of [[expectation values]] to [[observables]] in an [[algebra of observables]]. This is the definition used in \emph{[[quantum probability theory]]} (which subsumes ordinary [[probability theory]]). See at \begin{itemize}% \item \emph{[[state in AQFT and operator algebra]]} \end{itemize} for details. \hypertarget{in_classical_mechanics}{}\subsubsection*{{In classical mechanics}}\label{in_classical_mechanics} In classical [[Lagrangian mechanics]], a pure state is a [[global element|point]] in the [[state space]] of the system, giving all of the (generalised) [[generalized position|positions]] and [[velocity|velocities]]. In classical [[Hamiltonian mechanics]], a pure state is a point in the [[phase space]] of the system, giving the positions and [[momentum|momenta]]. In either case, a mixed state is a [[probability distribution]] on the space of pure states. More generally, a \emph{[[classical state]]} is a [[linear function]] $\rho\colon A \to \mathbb{R}$ on the [[Poisson algebra]] $A$ underlying the [[classical mechanical system]] which satisfies \emph{positivity} and \emph{normalization}. \hypertarget{in_geometric_quantization}{}\subsubsection*{{In geometric quantization}}\label{in_geometric_quantization} \begin{itemize}% \item [[space of states (in geometric quantization)]] \end{itemize} \hypertarget{in_hilbertspace_quantum_mechanics}{}\subsubsection*{{In Hilbert-space quantum mechanics}}\label{in_hilbertspace_quantum_mechanics} In [[quantum mechanics]] given by a [[Hilbert space]] $H$, a [[pure state]] is a ray in $H$, which we often call the Hilbert space of states. Strictly speaking, the space of states is not $H$ but $(H \setminus \{0\})/\mathbb{C}$, or equivalently $S(H)/\mathrm{U}(1)$. A mixed state is then a [[density matrix]] on $H$. \hypertarget{in_aqft}{}\subsubsection*{{In AQFT}}\label{in_aqft} In [[AQFT]], a [[quantum mechanical system]] is given by a $C^*$-[[C-star-algebra|algebra]] $A$, and a [[quantum state]] is usually defined as a linear function $\rho\colon A \to \mathbb{C}$ which satisfies \emph{positivity} and \emph{normalization}; see [[states in AQFT and operator algebra]]. Arguably, the correct notion of state to use is that of [[quasi-state]]; every state gives rise to a unique quasi-state, but not conversely. However, when either classical mechanics or Hilbert-space quantum mechanics is formulated in AQFT, every quasi-state \emph{is} a state (at least if the Hilbert space is not of very low dimension, by [[Gleason's theorem]]). See also the Idea-section at [[Bohr topos]] for a discussion of this point. \hypertarget{in_fqft}{}\subsubsection*{{In FQFT}}\label{in_fqft} In the [[FQFT]] formulation of [[quantum field theory]], a physical system is given by a [[cobordism]] [[representation]] \begin{displaymath} Bord_n^S \to \mathcal{C} \,. \end{displaymath} In this formulation the [[k-morphism|(n-1)-morphism]] in $\mathcal{C}$ assigned to an $(n-1)$-dimensional [[manifold]] $\Sigma_{n-1}$ is the \emph{space of states} over that manifold. A state is accordingly a [[generalized element]] of this object. \hypertarget{pure_and_mixed_states}{}\subsection*{{Pure and mixed states}}\label{pure_and_mixed_states} In [[statistical physics]], a [[pure state]] is a state of maximal information, while a [[mixed state]] is a state with less than maximal information. In the classical case, we may say that a pure state is a state of \emph{complete} information, but this does not work in the quantum case; from the perspective of the information-theoretic or Bayesian interpretation of quantum physics, this inability to have complete information, even when having maximal information, is the key feature of [[quantum physics]] that distinguishes it from [[classical physics]]. See [[pure state]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Here are some toy examples of spaces of states. For an impossible system, the space of states is [[empty space|empty]]; for a trivial system (with a unique way to be), then space of states is the [[point]]. This unique state is pure. For a classical [[bit]], a system with two distinct ways to be, the space of states is a [[line segment]]; a state is given by a real number $t$ with $0 \leq t \leq 1$. This $t$ is the probability that the system is in the first state, with $1 - t$ the probability that it is in the second. The two pure states correspond to $t = 0$ and $t = 1$. For a quantum bit, a [[qubit]], the space of states is shaped like a gridiron (American or Canadian) football. A state is given by a matrix \begin{displaymath} \begin{pmatrix} a & b + \mathrm{i} c \\ b - \mathrm{i} c & d \end{pmatrix} \end{displaymath} with unit trace and nonnegative determinant; in other words, it's given by real numbers $a$, $b$, and $c$ satisfying the inequality \begin{displaymath} a^2 + b^2 + c^2 \leq a . \end{displaymath} The pure states are those satisfying \begin{displaymath} a^2 + b^2 + c^2 = a , \end{displaymath} forming the surface of the football (what one might call a gridiron footsphere, although properly it is a \href{http://mathworld.wolfram.com/Lemon.html}{lemon}). If we graph $a - a^2$ where it is positive (from $0$ to $1$) and rotate this around the $a$-axis, then we get this lemon. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{state} \begin{itemize}% \item [[classical state]], \item [[quantum state]] \begin{itemize}% \item [[wave function]] \item [[superposition]] \item [[space of states (in geometric quantization)]] \item [[state in AQFT and operator algebra]] \end{itemize} \item [[ground state]] \end{itemize} \item [[observable]] \begin{itemize}% \item [[algebra of observables]] \item [[GNS construction]] \item [[quantum operator (in geometric quantization)]] \end{itemize} \end{itemize} [[!include Isbell duality - table]] [[!redirects state]] [[!redirects states]] [[!redirects physical state]] [[!redirects physical states]] [[!redirects space of states]] [[!redirects spaces of states]] [[!redirects space of physical states]] [[!redirects spaces of physicsal states]] \end{document}