\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{state on a star-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{algeraic_quantum_field_theory}{}\paragraph*{{Algeraic Quantum Field Theory}}\label{algeraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \begin{quote}% This entry describes a concrete formalization of the general notion of [[state]] in the context of [[AQFT]] and [[operator algebra]]. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_unital_star_algebras}{For unital star algebras}\dotfill \pageref*{for_unital_star_algebras} \linebreak \noindent\hyperlink{for_algebras}{For $C^\ast$-Algebras}\dotfill \pageref*{for_algebras} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{exposition}{Exposition}\dotfill \pageref*{exposition} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} In [[physics]], a \emph{[[state]]} $\langle - \rangle$ is the information that allows to assign to each [[observable]] $A$ the [[expectation value]] $\langle A\rangle$ that this observable has when the [[physical system]] is assumed to be in that state. Often this is formalized in the [[Schrödinger picture]] where a [[Hilbert space|Hilbert]] [[space of states]] $\mathcal{H}$ is taken as primary, and the [[observables]] are [[representation|represented]] as suitable [[linear operators]] $A$ on $\mathcal{H}$. Then for $\psi \in \mathcal{H}$ a state ([[pure state]]) the [[expectation value]] of $A$ in this state is the [[inner product]] $\langle \psi \vert A \vert \psi \rangle \coloneqq (\psi, A \psi)$. This defines a [[linear function]] \begin{displaymath} \langle \psi \vert (-) \vert \psi \rangle \;\colon\; \mathcal{A} \longrightarrow \mathbb{C} \end{displaymath} on the [[algebra of observables]] $\mathcal{A}$, satisfying some extra properties. Conversely, in the [[Heisenberg picture]] one may take the ``abstract'' [[associative algebra|algebra]] [[algebra of quantum observables|of observables]] as primary (i.e. not necessarily manifested as an [[operator algebra]]), and declare that a state is any linear functional \begin{displaymath} \langle - \rangle \;\colon\; \mathcal{A} \longrightarrow \mathbb{C} \end{displaymath} which is \emph{positive} in that $\langle A^\ast A\rangle \geq 0$ and \emph{normalized} in that $\langle 1\rangle = 1$. Under suitable conditions a [[Hilbert space|Hilbert]] [[space of states]] may be (re-)constructed from this \emph{a posteriori} via the \emph{[[GNS construction]]}. Traditionally this definition is considered for [[algebras of observables]] which are [[C\emph{-algebras]] (as usually required for [[non-perturbative quantum field theory]], see e.g. \hyperlink{Fredenhagen03}{Fredenhagen 03, section 2}), but the definition makes sense generally for plain [[star-algebras]], such as for instance for the [[formal power series algebras]] that appear in [[perturbative quantum field theory]] (e.g. \hyperlink{BordemannWaldmann96}{Bordemann-Waldmann 96, def. 1}, \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, def. 2.4}, \hyperlink{KhavkineMoretti15}{Khavkine-Moretti 15, def. 6}, \hyperlink{Duetsch18}{Dütsch 18, def. 2.11}).} The perspective that states are normalized positive linear functionals on the algebra of observables is implicit in traditional [[perturbative quantum field theory]], where it is encoded in the [[2-point function]] corresponding to a [[vacuum state]] or more generally a [[quasi-free quantum state]] (the \emph{[[Hadamard propagator]]}). The perspective is made explicit in [[algebraic quantum field theory]] (see e.g. \hyperlink{Fredenhagen03}{Fredenhagen 03, section 2}) and for [[star-algebras]] of observables that are not necessarily [[C\emph{-algebras]] in [[perturbative algebraic quantum field theory]] (e.g. \hyperlink{BordemannWaldmann96}{Bordemann-Waldmann 96}, \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, def. 2.4}, \hyperlink{KhavkineMoretti15}{Khavkine-Moretti 15, def. 6}, \hyperlink{Duetsch18}{Dütsch 18, def. 2.11}).} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_unital_star_algebras}{}\subsubsection*{{For unital star algebras}}\label{for_unital_star_algebras} \begin{defn} \label{StateOnAStarAlgebra}\hypertarget{StateOnAStarAlgebra}{} \textbf{([[state]] on a [[unital algebra|unital]] [[star algebra]])} Let $\mathcal{A}$ be a [[unital]] [[star-algebra]] over the [[complex numbers]] $\mathbb{C}$. A \emph{state} on $\mathcal{A}$ is a [[linear function]] \begin{displaymath} \rho \;\colon\; \mathcal{A} \longrightarrow \mathbb{C} \end{displaymath} such that \begin{enumerate}% \item (positivity) for all $A \in \mathcal{A}$ the value of $\rho$ on the product $A^\ast A$ is \begin{enumerate}% \item [[real part|real]] $\rho(A^\ast A) \in \mathbb{R} \hookrightarrow \mathbb{C}$ \item as such [[non-negative real number|non-negative]]: $\rho(A^\ast A) \geq 0$. \end{enumerate} \item (normalization) $\rho(1) = 1$. \end{enumerate} \end{defn} (e.g. \hyperlink{BordemannWaldmann96}{Bordemann-Waldmann 96}, \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, def. 2.4}, \hyperlink{KhavkineMoretti15}{Khavkine-Moretti 15, def. 6}) \begin{remark} \label{}\hypertarget{}{} \textbf{([[probability theory|probability theoretic]] interpretation of [[state on a star-algebra]])} A [[star algebra]] $\mathcal{A}$ equipped with a [[state on a star-algebra|state]] is also called a \emph{[[quantum probability space]]}, at least when $\mathcal{A}$ is in fact a [[von Neumann algebra]]. \end{remark} \begin{remark} \label{StatesFormAConvexSet}\hypertarget{StatesFormAConvexSet}{} \textbf{([[state on a star-algebra|states]] form a [[convex set]])} For $\mathcal{A}$ a unital [[star-algebra]], the [[set]] of states on $\mathcal{A}$ according to def. \ref{StateOnAStarAlgebra} is naturally a [[convex set]]: For $\rho_1, \rho_2 \colon \mathcal{A} \to \mathbb{C}$ two states then for every $p \in [0,1] \subset \mathbb{R}$ also the [[linear combination]] \begin{displaymath} \itexarray{ \mathcal{A} &\overset{p \rho_1 + (1-p) \rho_2}{\longrightarrow}& \mathbb{C} \\ A &\mapsto& p \rho_1(A) + (1-p) \rho_2(A) } \end{displaymath} is a state. \end{remark} \begin{defn} \label{PureStateOnAStarAlgebra}\hypertarget{PureStateOnAStarAlgebra}{} \textbf{([[pure state]])} A state $\rho \colon \mathcal{A} \to \mathbb{C}$ on a unital [[star-algebra]] (def. \ref{StateOnAStarAlgebra}) is called a \emph{[[pure state]]} if it is extremal in the [[convex set]] of all states (remark \ref{StatesFormAConvexSet}) in that an identification \begin{displaymath} \rho = p \rho_1 + (1-p) \rho_2 \end{displaymath} for $p \in (0,1)$ implies that $\rho_1 = \rho_2$ (hence $= \rho$). \end{defn} \hypertarget{for_algebras}{}\subsubsection*{{For $C^\ast$-Algebras}}\label{for_algebras} The following discusses states specifically on [[C\emph{-algebras]].} \begin{defn} \label{}\hypertarget{}{} An element $A$ of an (abstract) $C^*$-algebra is called \textbf{[[positive operator|positive]]} if it is [[self-adjoint operator|self-adjoint]] and its [[spectrum of an operator|spectrum]] is contained in $[0, \infinity)$. We write $A \ge 0$ and say that the set of all [[positive operators]] is the positive cone (of a given $C^*$-algebra). \end{defn} \begin{remark} \label{}\hypertarget{}{} This definition is motivated by the [[Hilbert space]] situation, where an operator $A \in \mathcal{B} (\mathcal{H})$ is called [[positive operator|positive]] if for every vector $x \in \mathcal{H}$ the inequality $\langle x, A x \rangle \ge 0$ holds. If the abstract $C^*$-algebra of the definition above is represented on a Hilbert space, then we see that by [[functional calculus]] we can define a self adjoint operator $B$ by $B \coloneqq f(A)$ with $f(t) := t^{1/2}$ and get $\langle x, A x \rangle = \langle B x, B x \rangle \ge 0$. This shows that the positive elements of the abstract algebra, if represented on a Hilbert space, become positive operators as defined here in the Hilbert space setting. \end{remark} \begin{defn} \label{}\hypertarget{}{} A [[linear functional]] $\rho$ on an $C^*$-algebra is \textbf{positive} if $A \ge 0$ implies that $\rho(A) \ge 0$. A \textbf{state} of a unital $C^*$-algebra is [[linear functional]] $\rho$ such that $\rho$ is positive and $\rho(1) = 1$. \end{defn} Though the mathematical notion of state is already close to what physicists have in mind, they usually restrict the set of states further and consider normal states only. We let $\mathcal{R}$ be an $C^*$-algebra and $\pi$ an representation of $\mathcal{R}$ on a Hilbert space $\mathcal{H}$. \begin{theorem} \label{}\hypertarget{}{} A \textbf{normal state} $\rho$ is a state that satisfies one of the following equivalent conditions: \begin{itemize}% \item $\rho$ is weak-operator continuous on the unit ball of $\pi(\mathcal{R})$. \item $\rho$ is strong-operator continuous on the unit ball $\pi(\mathcal{R})$. \item $\rho$ is ultra-weak continuous. \item There is an operator $A$ of [[trace class]] of $\mathcal{H}$ with $tr(A) = 1$ such that $\rho(\pi(R)) = tr(A \pi(R))$ for all $R \in \mathcal{R}$. \end{itemize} \end{theorem} This appears as \hyperlink{KadisonRingrose}{KadisonRingrose, def. 7.1.11, theorem 7.1.12} \begin{remark} \label{}\hypertarget{}{} This list is not complete, there are more commonly used equivalent characterizations of normal states. The last one is most frequently used by physicists, in that context the operator $A$ is also called a [[density matrix]] or density operator. \end{remark} Sometimes the observables of a system are described by an abstract $C^*$-algebra, in this case an important notion is the folium: \begin{defn} \label{}\hypertarget{}{} The \textbf{folium} of a representation $\pi$ of an $C^*$-algebra $\mathcal{R}$ on a Hilbert space is the set of normal states of $\pi(\mathcal{R})$. \end{defn} \begin{defn} \label{}\hypertarget{}{} A state $\rho$ of a representation is called a \textbf{vector state} if there is a $x \in \mathcal{H}$ such that $\rho(\pi(R)) = \langle \pi(R)x, x \rangle$ for all $R \in \mathcal{R}$. \end{defn} \begin{theorem} \label{}\hypertarget{}{} Normal states are vector states if $\mathcal{R}$ is a [[von Neumann algebra]] with a separating vector. More precisely: Let $\mathcal{R}$ be a von Neumman algebra acting on a Hilbert space $\mathcal{H}$, let $\rho$ be a normal state of $\mathcal{R}$ and $x \in \mathcal{H}$ be a separating vector for $\mathcal{R}$, then there is a $y \in \mathcal{H}$ such that $\rho(R) = \langle Ry, y \rangle$ for all $R \in \mathcal{R}$. \end{theorem} This appears as \hyperlink{KadisonRingrose}{KadisonRingrose, theorem 7.2.3}. The set of states of an $C^*$-algebra is sometimes called the \textbf{[[space of quantum states|state space]]}. The state space is non-empty (define a state on the subalgebra $\mathbb{C} 1$ and extend it to the whole $C^*$-algebra via the [[Hahn-Banach theorem]]), convex and weak$^*$-compact, so it has extreme points. By the [[Krein-Milman theorem]] (see Wikipedia: \href{http://en.wikipedia.org/wiki/Krein%E2%80%93Milman_theorem}{Krein-Milman theorem}) it is the weak$^*$-closure of its extreme points. \begin{defn} \label{}\hypertarget{}{} A \textbf{pure state} is a state that is an extreme point of the state space. \end{defn} The term ``pure'' originates from the notion of [[entanglement]], a pure state is not a mixture of two distinct other states. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{prop} \label{ClassicalProbabilityMeasureAsStateOnMeasurableFunctions}\hypertarget{ClassicalProbabilityMeasureAsStateOnMeasurableFunctions}{} \textbf{(classical [[probability measure]] as state on [[measurable functions]])} For $\Omega$ classical [[probability space]], hence a [[measure space]] which normalized total measure $\int_\Omega d\mu = 1$, let $\mathcal{A} \coloneqq L^1(\Omega)$ be the algebra of Lebesgue [[measurable functions]] with values in the [[complex numbers]], regarded as a [[star algebra]] by pointwise [[complex conjugation]]. Then forming the [[expectation value]] with respect to $\mu$ defines a [[state on a star-algebra|state]] (def. \ref{StateOnAStarAlgebra}): \begin{displaymath} \itexarray{ L^1(\Omega) &\overset{\langle (-)\rangle_\mu}{\longrightarrow}& \mathbb{C} \\ A &\mapsto& \int_\Omega A d\mu } \end{displaymath} \end{prop} \begin{example} \label{ElementsOfHilbertSpaceAsPureStates}\hypertarget{ElementsOfHilbertSpaceAsPureStates}{} \textbf{(elements of a [[Hilbert space]] as [[pure states]] on [[bounded operators]])} Let $\mathcal{H}$ be a [[complex numbers|complex]] [[separable Hilbert space|separable]] [[Hilbert space]] with [[inner product]] $\langle -,-\rangle$ and let $\mathcal{A} \coloneqq \mathcal{B}(\mathcal{H})$ be the algebra of [[bounded operators]], regarded as a [[star algebra]] under forming [[adjoint operators]]. Then for every element $\psi \in \mathcal{H}$ of unit [[norm]] $\langle \psi,\psi\rangle = 1$ there is the [[state on a star-algebra|state]] (def. \ref{StateOnAStarAlgebra}) given by \begin{displaymath} \itexarray{ \mathcal{B}(\mathcal{H}) &\overset{\langle (-)\rangle_\psi}{\longrightarrow}& \mathbb{C} \\ A &\mapsto& \langle \psi \vert\, A \, \vert \psi \rangle &\coloneqq& \langle \psi, A \psi \rangle } \end{displaymath} These are [[pure states]] (def. \ref{PureStateOnAStarAlgebra}). More general states in this case are given by [[density matrices]]. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[Fell's theorem]]; \item [[Gleason's theorem]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[state]], [[quasi-state]] \item [[quasi-free state]] \item [[vacuum state]] \item [[Hadamard state]] \item [[Alfsen-Shultz theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{exposition}{}\subsubsection*{{Exposition}}\label{exposition} \begin{itemize}% \item Jonathan Gleason, \emph{The $C*$-algebraic formalism of quantum mechanics}, 2009 (\href{http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Gleason.pdf}{pdf}, [[GleasonAlgebraic.pdf:file]]) \end{itemize} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} \begin{itemize}% \item Richard Kadison, John Ringrose, \emph{Fundamentals of the theory of operator algebras}, AMS (1991) \item [[Martin Bordemann]], [[Stefan Waldmann]], \emph{Formal GNS Construction and States in Deformation Quantization}, Commun. Math. Phys. (1998) 195: 549. (\href{https://arxiv.org/abs/q-alg/9607019}{arXiv:q-alg/9607019}, \href{https://doi.org/10.1007/s002200050402}{doi:10.1007/s002200050402}) \item [[Klaus Fredenhagen]], section 2 of \emph{Algebraische Quantenfeldtheorie}, lecture notes, 2003 ([[FredenhagenAQFT2003.pdf:file]]) \item [[Hans Halvorson]], [[Michael Müger]], def. 1.11 in \emph{Algebraic Quantum Field Theory} (\href{https://arxiv.org/abs/math-ph/0602036}{arXiv:math-ph/0602036}) \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], definition 2.4 in \emph{Perturbative algebraic quantum field theory}, In \emph{Mathematical Aspects of Quantum Field Theories}, Springer 2016 (\href{https://arxiv.org/abs/1208.1428}{arXiv:1208.1428}) \item [[Igor Khavkine]], [[Valter Moretti]], \emph{Algebraic QFT in Curved Spacetime and quasifree Hadamard states: an introduction}, Chapter 5 in [[Romeo Brunetti]] et al. (eds.) \emph{Advances in Algebraic Quantum Field Theory}, Springer, 2015 (\href{https://arxiv.org/abs/1412.5945}{arXiv:1412.5945}) \item [[Katarzyna Rejzner]], section 2.1.2 of \emph{Perturbative Algebraic Quantum Field Theory}, Mathematical Physics Studies, Springer 2016 (\href{https://link.springer.com/book/10.1007%2F978-3-319-25901-7}{web}) \item [[Klaus Fredenhagen]], Falk Lindner, \emph{Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics}, Communications in Mathematical Physics Volume 332, Issue 3, pp 895-932, 2014-12-01 (\href{https://arxiv.org/abs/1306.6519}{arXiv:1306.6519}) \item [[Klaas Landsman]], around def. 2.4 in \emph{Foundations of quantum theory -- From classical concepts to Operator algebras}, Springer Open 2017 (\href{https://link.springer.com/content/pdf/10.1007%2F978-3-319-51777-3.pdf}{pdf}) \item [[Michael Dütsch]], section 2.5 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} For more references see at \emph{[[operator algebra]]}. [[!redirects states on a star-algebra]] [[!redirects states on star-algebras]] [[!redirects state on an operator algebra]] [[!redirects state of an operator algebra]] [[!redirects states of an operator algebra]] [[!redirects states of operator algebras]] [[!redirects state on an operator algebra]] [[!redirects states on an operator algebra]] [[!redirects states on operator algebras]] [[!redirects state in AQFT]] [[!redirects states in AQFT]] [[!redirects state in operator algebra]] [[!redirects states in operator algebra]] [[!redirects state in AQFT and operator algebra]] [[!redirects states in AQFT and operator algebra]] [[!redirects state of an algebra]] [[!redirects states of an algebra]] [[!redirects states of algebras]] [[!redirects state on an algebra]] [[!redirects states on an algebra]] [[!redirects states on algebras]] [[!redirects normal state]] [[!redirects normal states]] \end{document}