\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{steady function} \hypertarget{steady_functions}{}\section*{{Steady functions}}\label{steady_functions} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relationship_to_constancy}{Relationship to constancy}\dotfill \pageref*{relationship_to_constancy} \linebreak \noindent\hyperlink{steady_endomaps}{Steady endomaps}\dotfill \pageref*{steady_endomaps} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A steady function is one equipped with a certain sort of ``witness of [[constant function|constancy]]''. However, in [[higher category theory]] and [[homotopy theory]], it is debatable whether or not this witness really exhibits ``constancy'', hence the use of a different word. (The word ``steady'' was suggested by [[Andrej Bauer]].) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In [[homotopy type theory]], a function $f:A\to B$ is \textbf{steady} if we have a term of type \begin{displaymath} \prod_{(x,y:A)} (f x = f y). \end{displaymath} By regarding homotopy type theory as the [[internal logic]] of an [[(∞,1)-topos]], we obtain a definition that makes sense in any higher category with binary products: a morphism $f:A\to B$ is \textbf{steady} if the two composites $A\times A \rightrightarrows A \xrightarrow{f} B$ are equivalent. \hypertarget{relationship_to_constancy}{}\subsection*{{Relationship to constancy}}\label{relationship_to_constancy} If $f$ is [[constant function|constant]] in the sense that it factors through the [[terminal object]] (i.e. we have $f = \lambda x. b$ for some $b:B$), then $f$ is obviously steady. The converse holds if we know that the domain $A$ is [[inhabited type|inhabited]], for if $a_0:A$, then $f a = f a_0$ for all $a:A$. However, the [[identity function]] of the [[empty type]] is steady, yet not equal to $\lambda x.b$ for any $b:\emptyset$ (since no such $b$ exists). More generally, if $f$ factors through the [[propositional truncation]] ${\|A\|}$, then it is steady, since any two elements of ${\|A\|}$ are equal (i.e. it is an [[h-proposition]]). In fact, this is true if $f$ factors through \emph{any} h-proposition (in which case it in fact also factors through ${\|A\|}$, by the universal property of the latter). The converse to this last implication does hold for some specific $f:A\to B$, such as: \begin{itemize}% \item If $B$ is an [[h-set]]. For then $f$ factors through the 0-truncation ${\|A\|_0}$, and the set-[[coequalizer]] of the two projections ${\|A\|_0} \times {\|A\|_0} \to {\|A\|_0}$ is the propositional truncation. \item If $A$ has [[split support]]. For then we have a composite ${\|A\|} \to A \xrightarrow{f} B$, whose restriction to $A$ is equal to $f$ by steadiness. \item If $A=P+Q$, with $P$ and $Q$ h-propositions. For then ${\|A\|}$ is the [[join]] $P*Q$ of $P$ and $Q$, i.e. the [[pushout]] of the two projections $P \leftarrow P\times Q \to Q$. The universal property of this pushout says exactly that any steady map $P+Q\to B$ factors through $P*Q = \Vert P+Q\Vert$. \item If $A=B$ (see below). \end{itemize} However, it can fail in general, even when $A$ is [[mere proposition|merely]] inhabited (i.e. ${\|A\|}= 1$). For instance, let $A=P+Q+R$ for h-propositions $P$, $Q$, and $R$, and let $B$ be the triple pushout of $P$, $Q$, and $R$ under $P\times Q$, $P\times R$, and $Q\times R$. Then there is a steady map $f:A\to B$, but there exist models in which ${\|A\|} = 1$ but $B$ has no [[global element]. The most straightforward such model is [[presheaves]] on the [[poset]] of proper [[subsets]] of $\{a,b,c\}$, with $P=\{a,b\}$, $Q=\{b,c\}$, and $R=\{a,c\}$. In this model, we have $B(S) = 1$ for all nonempty proper subsets $S$, while $B(\emptyset) = S^1$, and $B$ has no global sections. See \href{https://groups.google.com/d/msg/homotopytypetheory/FeBAScTgwzg/Dx6E3-ezdxIJ}{this discussion}. In general, being steady may be regarded as an ``incoherent approximation'' to constancy in the sense of factoring through an h-proposition. Indeed for a set $A$, its propositional truncation is the set-coequalizer of $A\times A\rightrightarrows A$. However, in general such a construction requires the realization of a whole simplicial diagram (the simplicial kernel of the map $A\to 1$). \hypertarget{steady_endomaps}{}\subsection*{{Steady endomaps}}\label{steady_endomaps} While an arbitrary steady function is not very coherent, a steady [[endofunction]] $f:A\to A$ has some extra degree of ``coherence'', as witnessed by the following results of \hyperlink{KECA}{(KECA)}. \begin{ulemma} If $f:A\to A$ is steady, then the type $Fix(f) \coloneqq \sum_{x:A} (f x = x)$ is an h-proposition, and equivalent to ${\|A\|}$. \end{ulemma} \begin{proof} Suppose $H: \prod_{(x,y:A)} (f x = f y)$, and let $(a,p),(b,q):Fix(f)$; we want to show $(a,p)=(b,q)$. Let $r:a=b$ be the concatenated path \begin{displaymath} a \xrightarrow{p^{-1}} f a \xrightarrow{H_{a,a}^{-1}} f a \xrightarrow{H_{a,b}} f b \xrightarrow{q} b. \end{displaymath} It will suffice to show that $p \bullet r = ap_f(r) \bullet q$, where $ap_f$ denotes the action of $f$ on paths. However, the dependent action of $H$ on paths implies that $H_{x,y} \bullet ap_f(s) = H_{x,y'}$ for any $x:A$ and any $s:y=y'$, and in particular $ap_f(r) = H_{a,a}^{-1} \bullet H_{a,b}$. From this $p \bullet r = ap_f(r) \bullet q$ is immediate. Thus, $Fix(f)$ is an h-proposition. Now we have a map $g:A\to Fix(f)$ defined by $g(x) \coloneqq (f x, H_{f x,x})$, so by the universal property of ${\|A\|}$, we have ${\|A\|} \to Fix(f)$. On the other hand, we have the first projection $pr_1:Fix(f) \to A$, and hence $Fix(f) \to {\|A\|}$. Thus, these two h-propositions are equal. \end{proof} \begin{utheorem} A type $A$ has [[split support]] if and only if it admits a steady endomap $f:A\to A$. \end{utheorem} \begin{proof} Given ${\|A\|} \to A$, the composite $A\to {\|A\|} \to \A$ is steady. Conversely, if $f$ is steady, $Fix(f) = {\|A\|}$ by the lemma, so $pr_1:Fix(f) \to A$ splits the support of $A$. \end{proof} Note that $pr_1 \circ g = f$, so that if we start with a steady endomap of $A$, deduce a splitting of the support of $A$, and then reconstruct a steady endomap, we obtain the same map. However, the proof of steadiness is generally different from the one we began with, so this ``logical equivalence'' is not an equivalence of types. \begin{ucor} A type $A$ is an [[h-set]] if and only if every identity type $x=_A y$ admits a steady endomap. \end{ucor} \begin{proof} We know that $A$ is an h-set just when all $x=_A y$ have split support. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Nicolai Kraus]] and [[Martin Escardo]] and [[Thierry Coquand]] and [[Thorsten Altenkirch]], ``Generalizations of Hedberg's theorem'', M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 173-188. Springer, Heidelberg 2013. \href{http://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf}{PDF}. In this paper, steady functions are called ``constant''. \end{itemize} [[!redirects steady function]] [[!redirects steady functions]] \end{document}