\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{strict 2-group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_group_theory}{}\paragraph*{{Higher group theory}}\label{higher_group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{expanding_the_definition}{Expanding the definition}\dotfill \pageref*{expanding_the_definition} \linebreak \noindent\hyperlink{in_terms_of_strict_2groupoids}{In terms of strict 2-groupoids}\dotfill \pageref*{in_terms_of_strict_2groupoids} \linebreak \noindent\hyperlink{InTermsOfCrossedModules}{In terms of crossed modules}\dotfill \pageref*{InTermsOfCrossedModules} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{from_crossed_modules}{From crossed modules}\dotfill \pageref*{from_crossed_modules} \linebreak \noindent\hyperlink{automorphism_2groups}{Automorphism 2-groups}\dotfill \pageref*{automorphism_2groups} \linebreak \noindent\hyperlink{from_congruence_relations}{From congruence relations}\dotfill \pageref*{from_congruence_relations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of strict 2-group is a strict [[vertical categorification]] of that of [[group]]. A strict 2-group is a [[group object]] [[internalization|internal]] to the [[category]] [[Grpd]] of [[groupoid]]s (regarded as an ordinary category, not as a [[2-category]]). This means that it is a groupoid $G$ equipped with a product [[functor]] $\cdot : G \times G \to G$ that behaves like the product in a [[group]], in that it is unital and associative and such that there are inverses under multiplication. More general [[2-group]]s correspond to group objects in the [[2-category]] incarnation of [[Grpd]]. For them associativity, inverses etc have to hold and exist only up to coherent natural isomorphism. So strict 2-groups are particularly rigid incarnations of [[2-group]]s. We may think of any 2-group $G$ in terms of its [[delooping]] $\mathbf{B}G$, a [[2-groupoid]] with a single object, with morphisms the objects of $G$ and [[k-morphism|2-morphism]]s the morphisms of $G$. If $G$ is a strict 2-group, then $\mathbf{B}G$ is a strict 2-groupoid. This is often a useful point of view. In particular, the general strictification result of [[bicategory|bicategories]] implies that any such 2-groupoid is equivalent to a strict one. So, up to the right notion of equivalence, strict 2-groups already exhaust all 2-groups; we just have to take care to allow for \emph{homomorphisms} of these $2$-groups to be weak. (However, this theorem may not apply to structured $2$-groups, such as [[Lie 2-group]]s.) Strict 2-groups are also equivalently encoded in terms of [[crossed module]]s $(G_2 \to G_1)$ of ordinary groups: $G_1$ is the group of [[object]]s of the groupoid $G$ and $G_2$ the group of [[morphism]]s in $G$ whose source is the neutral element in $G_1$. In applications it is usually useful to pass back and forth between the 2-groupoid incarnation of strict 2-groups and their incarnation as crossed modules. The first perspective makes transparent many constructions, while the second perspective gives a useful means to do computations with 2-groups. The translation between the two points of view is described in detail below. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{strict [[2-group]]} is equivalently: \begin{itemize}% \item an [[internal category]] in [[Grp]], \item an [[internal groupoid]] in [[Grp]], \item an internal [[group object]] in [[Cat]], \item an internal [[group object]] in [[Grpd]], \item a [[strict 2-groupoid]] with one object. \end{itemize} \hypertarget{expanding_the_definition}{}\subsection*{{Expanding the definition}}\label{expanding_the_definition} We examine the first definition in more detail. Copying and adapting from the entry on general internal categories we have: A [[internal category]] in [[Grp]] is \begin{itemize}% \item a collection of group homomorphisms of the form \begin{displaymath} C_1 \stackrel{s,t}{\to} C_0 \stackrel{i}{\to} C_1 \end{displaymath} such that the composites $s\cdot i$ and $t\cdot i$ are the identity morphisms on $C_0$, and such that, writing $C_1 \times_{t,s} C_1$ for the pullback, \begin{displaymath} \itexarray{ C_1 \times_{t,s} C_1 &\to& C_1 \\ \downarrow && \downarrow^{t} \\ C_1 &\stackrel{s}{\to}& C_0 } \end{displaymath} there is, in addition, a homomorphism \begin{displaymath} C_1 \times_{t,s} C_1 \stackrel{comp}{\to} C_1 \end{displaymath} ``respecting $s$ and $t$''; \item such that the \emph{composition} $comp$ is associative and unital with respect to $i$ ``in the obvious way''. \end{itemize} \hypertarget{in_terms_of_strict_2groupoids}{}\subsubsection*{{In terms of strict 2-groupoids}}\label{in_terms_of_strict_2groupoids} Every strict 2-group $G$ defines a strict [[2-groupoid]] $\mathbf{B}G$ -- called its [[delooping]] -- defined by the fact that \begin{itemize}% \item $\mathbf{B}G$ has a single object $\bullet$; \item The [[hom-object|hom-groupoid]] $\mathbf{B}G(\bullet,\bullet) = G$ is the 2-group $G$ itself, regarded as a [[groupoid]]; \item the horizontal composition in $\mathbf{B}G$ is given by the group product operation on $G$. \end{itemize} Conversely, every strict 2-groupoid with a single object $\bullet$ defines a 2-group this way. Beware, however, as discussed in detail at [[crossed module]], that (strict) 2-groups and (strict) one-object 2-groupoids, live is somewhat different 2-categories. If one wants to really \emph{identify} $\mathbf{B}G$ in a way that respects morphisms between these objects, one needs to think of $\mathbf{B}G$ as a [[pointed object]] equipped with its unique pointing ${*} \to \mathbf{B}G$. \hypertarget{InTermsOfCrossedModules}{}\subsubsection*{{In terms of crossed modules}}\label{InTermsOfCrossedModules} We describe how a [[crossed module]] \begin{displaymath} [\mathbf{B}G] = (G_2 \stackrel{\delta}{\to} G_1) \end{displaymath} with action \begin{displaymath} \alpha : G_1 \to Aut(G_2) \end{displaymath} encodes a strict one-object 2-groupoid $\mathbf{B}G$, and hence a strict 2-group $G$. There are four isomorphic but different ways to construct $\mathbf{B}G$ from $[\mathbf{B}G]$, which differ by whether the composition of 1-morphisms and of 1-morphisms with 2-morphisms in $\mathbf{B}G$ is taken to correspond to the product in the groups $G_1$ and $G_2$, respectively, or in their opposites. In concrete computations it happens that not all of these choices directly yield the expected formulas in terms of classical group theory from a given diagrammatics involving $\mathbf{B}G$. While all choices will be isomorphic, some will be more convenient. Therefore often it matters which one of the four choices below one takes in order to get a streamlined translation between diagrammatics and formulas. For concrete examples of this phenomenon in practice see [[nonabelian group cohomology]] and [[gerbe]]. We now define the one-object strict [[2-groupoid]] $\mathbf{B}G$ from the crossed module $(\delta : G_2 \to G_1)$ with action $\alpha : G_1 \to Aut(G_2)$. \begin{itemize}% \item $\mathbf{B}G$ has a single [[object]] $\bullet$; \item The set of [[k-morphism|1-morphisms]] of $\mathbf{B}G$ is the group $G_1$: \begin{displaymath} 1Mor_{\mathbf{B}G}(\bullet, \bullet) := G_1 \,. \end{displaymath} For $g \in G_1$ we write $\bullet \stackrel{g}{\to} \bullet$ for the corresponding 1-morphism in $\mathbf{B}G$; \item Compositition of 1-morphisms is given by the product operation in $G_1$. There are two choices for the order in which to form the product. \begin{itemize}% \item \textbf{(convention F)} horizontal composition is given by \begin{displaymath} (\bullet \stackrel{g_1}{\to} \bullet \stackrel{g_2}{\to} \bullet) \;\; = \;\; (\bullet \stackrel{g_1 g_2}{\to} \bullet) \end{displaymath} \item \textbf{(convention B)} horizontal composition is given by \begin{displaymath} (\bullet \stackrel{g_1}{\to} \bullet \stackrel{g_2}{\to} \bullet) \;\; = \;\; (\bullet \stackrel{g_2 g_1}{\to} \bullet) \end{displaymath} \end{itemize} \item The [[set]] of [[k-morphism|2-morphism]]s of $\mathbf{B}G$ is the cartesian [[product]] $G_1 \times G_2$ where \begin{itemize}% \item the source operation is projection on the first factor \begin{displaymath} s := p_1 : G_1 \times G_2 \to G_1 \end{displaymath} \item the target operation on morphisms starting at the identity morphism is the boundary map $\delta : G_2 \to G_1$ of the crossed module combined with the product in $G_1$ \begin{displaymath} t|_{{Id}\times G_2} = \delta \end{displaymath} \end{itemize} So in diagrams this means that a 2-morphism corresponding to $(Id, h) \in G_1 \times G_2$ is labelled as \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{Id}} \\ \bullet &\Downarrow^{\mathrlap{h}}& \bullet \\ & \searrow \nearrow_{\mathrlap{\delta(h)}} } \,. \end{displaymath} The target of general 2-morphisms labeled by $h$ and starting at some $g$ is either $\delta(h)g$ of $g \delta(h)$, depending on the choice of conventions discussed in the following. \item Horizontal composition of 1-morphisms with 2-morphisms (``whiskering'') is determined by the rule \begin{itemize}% \item \textbf{(convention R)} \begin{displaymath} \itexarray{ & \nearrow \searrow^{Id} \\ \bullet &\Downarrow^h& \bullet &\stackrel{g}{\to}& \bullet \\ & \searrow \nearrow } \;\; := \;\; \itexarray{ & \nearrow \searrow^{g} \\ \bullet &\Downarrow^h& \bullet \\ & \searrow \nearrow } \end{displaymath} \begin{displaymath} \itexarray{ && & \nearrow \searrow^{Id} \\ \bullet &\stackrel{g}{\to}& \bullet &\Downarrow^h& \bullet \\ && & \searrow \nearrow } \;\; := \;\; \itexarray{ & \nearrow \searrow^{g} \\ \bullet &\Downarrow^{\alpha(g)(h)}& \bullet \\ & \searrow \nearrow } \end{displaymath} \item \textbf{(convention L)} \begin{displaymath} \itexarray{ && & \nearrow \searrow^{Id} \\ \bullet &\stackrel{g}{\to}& \bullet &\Downarrow^h& \bullet \\ && & \searrow \nearrow } \;\; := \;\; \itexarray{ & \nearrow \searrow^{g} \\ \bullet &\Downarrow^h& \bullet \\ & \searrow \nearrow } \end{displaymath} \begin{displaymath} \itexarray{ & \nearrow \searrow^{Id} \\ \bullet &\Downarrow^h& \bullet &\stackrel{g}{\to}& \bullet \\ & \searrow \nearrow } \;\; := \;\; \itexarray{ & \nearrow \searrow^{g} \\ \bullet &\Downarrow^{\alpha(g)(h)}& \bullet \\ & \searrow \nearrow } \end{displaymath} \end{itemize} \item Horizontal composition of 2-morphisms starting at the identity 1-morphism is fixed by the convention chosen for composition of 1-morphisms \begin{itemize}% \item in \textbf{convention F} \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{Id}} & & \nearrow \searrow^{\mathrlap{Id}} \\ \bullet &\Downarrow^{h_1}& \bullet &\Downarrow^{h_2}& \bullet \\ & \searrow \nearrow && \searrow \nearrow } \;\;\; = \;\;\; \itexarray{ & \nearrow \searrow^{\mathrlap{Id}} \\ \bullet &\Downarrow^{h_1 h_2}& \bullet \\ & \searrow \nearrow } \end{displaymath} \item in \textbf{convention B} \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{Id}} & & \nearrow \searrow^{\mathrlap{Id}} \\ \bullet &\Downarrow^{h_1}& \bullet &\Downarrow^{h_2}& \bullet \\ & \searrow \nearrow && \searrow \nearrow } \;\;\; = \;\;\; \itexarray{ & \nearrow \searrow^{\mathrlap{Id}} \\ \bullet &\Downarrow^{h_2 h_1}& \bullet \\ & \searrow \nearrow } \end{displaymath} \end{itemize} Notice that this is compatible with the source-target maps due to the fact that that $\delta$ is a group homomorphism. \item With these choices made, all other compositions are now fixed by use of the exchange law: \item Vertical composition of composable 2-morphisms is given, on the labels, by the product in $G_2$, in the following order \textbf{(in convention L B)} \begin{displaymath} \itexarray{ & \nearrow &\Downarrow^{\mathrlap{h_1}}& \searrow \\ \bullet &&\to&& \bullet \\ & \searrow &\Downarrow^{\mathrlap{h_2}}& \nearrow } \;\;\; = \;\;\; \itexarray{ & \nearrow \searrow \\ \bullet &\Downarrow^{\mathrlap{h_2 h_1}}& \bullet \\ & \searrow \nearrow } \,. \end{displaymath} \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{from_crossed_modules}{}\subsubsection*{{From crossed modules}}\label{from_crossed_modules} By the above, every [[crossed module]] gives an example of a 2-group. But the nature of some strict 2-groups is best understood by genuinely regarding them as 2-categorical structures. This is true notably for the example of the automorphism 2-groups, discussed below. These, too, of course are equivalenly encoded by crossed modules, but that may hide a bit their structural meaning. \hypertarget{automorphism_2groups}{}\subsubsection*{{Automorphism 2-groups}}\label{automorphism_2groups} For $a$ any [[object]] in a [[strict 2-category]] $C$, there is the strict \textbf{automorphism 2-group} $Aut_C(a)$ whose \begin{itemize}% \item objects are 1-[[isomorphism]]s $a \to a$ in $C$; \item morphisms are 2-isomorphisms between these 1-isomorphisms. \end{itemize} In particular, for $K$ a [[group]] and $\mathbf{B}K$ its [[delooping]] [[groupoid]], we have the automorphism 2-group of $\mathbf{B}K$ in the 2-category [[Grpd]]. This is usually called the \textbf{automorphism 2-group of the group $K$} \begin{displaymath} AUT(K) := Aut_{Grpd}(\mathbf{B}K) \,. \end{displaymath} Its objects are the ordinary [[automorphism]]s of $K$ in [[Grp]], while its 2-morphisms go between two automorphisms that differ by an inner automorphism. Accordingly, the [[crossed module]] corresponding to the 2-group $AUT(K)$ is \begin{displaymath} [AUT(K)] = \left( \itexarray{ K &\stackrel{Ad}{\to}& Aut(K) \\ } \right) \,, \end{displaymath} where the boundary map is the one that sends each element $k \in K$ to the inner automorphism given by conjugation with $k$: \begin{displaymath} Ad(k) : q \mapsto k q k^{-1} \,. \end{displaymath} \hypertarget{from_congruence_relations}{}\subsubsection*{{From congruence relations}}\label{from_congruence_relations} Perhaps the \emph{simplest example} of such a structure is a [[congruence|congruence relation]] on a group $G$. If $\sim$ is a congruence relation on $G$, then we form the 2-group by setting $C_0 = G$ and $C_1$ to be the group of pairs $(a,b)$ with $a\sim b$. That this is a group follows from the definition of congruence given in the above reference. The two maps $s$ and $t$ are defined by $s(a,b) = a$, $t(a,b) = b$, whilst $i(a) = (a,a)$. The pullback is a subgroup of $C_1\times C_1$ given by all `pairs of pairs' $((a,b),(b,c))$ and the composition homomorphism sends such a pair to $(a,c)$. The other properties are easy to check. Any congruence relation corresponds to a [[normal subgroup]], given by those elements $a$ that are congruent to the identity element of $G$, so that $e\sim a$. Likewise given a normal subgroup $N$ of $G$ you get a congruence, with $a \sim b$ iff $b^{-1} a$ (or equivalently, $a b^{-1}$) belongs to $N$. \hypertarget{references}{}\subsection*{{References}}\label{references} See also the references at [[2-group]]. The equivalence between strict 2-groups and crossed modules is discussed in \begin{itemize}% \item [[Ronnie Brown]] and C. Spencer, \emph{G-groupoids, crossed modules and the fundamental groupoid of a topological group}, Proc. Kon. Ned. Akad. v. Wet, 79, (1976), 296--302.) \end{itemize} [[!redirects strict 2-groups]] \end{document}