\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{strict n-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{strict $n$-category} is a [[strict omega-category]] all whose [[k-morphisms]] for $k \gt n$ are identities. The [[category]] $n Cat$ of strict $n$-categories and [[n-functors]] between them can also be defined [[induction|inductively]] by \begin{itemize}% \item starting by setting $0 Cat :=$ [[Set]]; \item noticing that [[Set]] is canonically a (symmetric, in fact cartesian) [[closed monoidal category]] such that one can consider [[enriched category|categories enriched]] over it; \item noticing that for $V$ any [[complete category|complete]] and [[cocomplete category|cocomplete]] closed monoidal category, also $V Cat$ (the category of $V$-[[enriched categories]]) has these same properties; \item finally setting, recursively, \begin{displaymath} (n+1)Cat := (n Cat) Cat \,. \end{displaymath} \end{itemize} The category $Str\omega Cat$ of strict $\omega$-categories can then in turn be defined as a suitable [[colimit]] of the categories $n Cat$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{defn} \label{GauntStrictNCategories}\hypertarget{GauntStrictNCategories}{} Write $Str n Cat$ for the 1-[[category]] of [[strict n-categories]]. Write \begin{displaymath} Str n Cat_{gaunt} \hookrightarrow Str n Cat \end{displaymath} for the [[full subcategory]] on the \emph{gaunt $n$-categories}, those $n$-categories whose only invertible [[k-morphisms]] are the identities. \end{defn} This subcategory was considered in (\hyperlink{Rezk}{Rezk}). The term ``gaunt'' is due to (\hyperlink{BarwickSchommerPries}{Barwick, Schommer-Pries}). See prop. \ref{GauntIs0Truncated} below for a characterization intrinsic to $(\infty,n)$-categories. \begin{example} \label{Globes}\hypertarget{Globes}{} For $k \leq n$ the $k$-[[globe]] is gaunt, $G_k \in Str n Cat_{gaunt} \hookrightarrow \in Str n Cat$. Write \begin{displaymath} \mathbb{G}_{\leq n} \hookrightarrow Str n Cat_{gaunt} \end{displaymath} for the [[full subcategory]] of the [[globe category]] on the $k$-globes for $k \leq n$. Being a [[subobject]] of a gaunt $n$-category, also the [[boundary]] of a globe $\partial G_k \hookrightarrow G_k$ is gaunt, i.e. the $(k-1)$-[[skeleton]] of $G_k$. \end{example} \begin{defn} \label{Suspension}\hypertarget{Suspension}{} Write \begin{displaymath} \sigma_k : Str (k) Cat \to Str (k+1) Cat \end{displaymath} for the ``categorical suspension'' functor which sends a strict $k$-category to the object $\sigma(X) \in Str (k+1) Cat \simeq (Str k Cat)Cat$ which has precisely two objects $a$ and $b$, has $\sigma(C)(a,a) = \{id_a\}$, $\sigma(C)(b,b) = \{id_b\}$, $\sigma(C)(b,a) = \emptyset$ and \begin{displaymath} \sigma(C)(a,b) = C \,. \end{displaymath} \end{defn} We usually suppress the subscript $k$ and write $\sigma^i = \sigma_{k+i} \circ \cdots \circ \sigma_{k+1} \circ \sigma_k$, etc. \begin{example} \label{}\hypertarget{}{} The $k$-[[globe]] $G_k$ is the $k$-fold suspension of the 0-globe (the point) \begin{displaymath} G_k = \sigma^k(G_0) \,. \end{displaymath} The [[boundary]] $\partial G_k$ of the $k$-globe is the $k$-fold suspension of the empty category \begin{displaymath} \partial G_k = \sigma^k(\emptyset) \,. \end{displaymath} Accordingly, the boundary inclusion $\partial G_k \hookrightarrow G_k$ is the $k$-fold suspension of the initial morphism $\emptyset \to G_0$ \begin{displaymath} (\partial G_k \hookrightarrow G_k) = \sigma^k(\emptyset \to G_0) \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} The category $Str n Cat_{gaunt}$ is a [[locally presentable category]] and in fact a [[locally finitely presentable category]]. \end{prop} (\hyperlink{BarwickSchommerPries}{B-PS, lemma 3.5}) \begin{remark} \label{}\hypertarget{}{} For $A,B$ two categories, a [[profunctor]] $A^{op} \times B \to Set$ is equivalently a functor $K \to G_1$ equipped with an identification $A \simeq K_0$ and $B \simeq K_1$. \end{remark} This motivates the following definition. \begin{defn} \label{}\hypertarget{}{} A \emph{$k$-profunctor} / $k$-correspondence of strict $n$-categories is a morphism $K \to G_k$ in $Str n Cat$. The category of $k$-correspondences is the [[slice category]] $Str n Cat/ G_k$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The categories $Str n Cat_{gaunt}/G_k$ of $k$-correspondences between gaunt $n$-categories are [[cartesian closed category]]. \end{defn} (\hyperlink{BarwickSchommerPries}{B-SP, cor. 5.4}) \begin{remark} \label{}\hypertarget{}{} By standard facts, in a [[locally presentable category]] $\mathcal{C}$ with [[finite limits]], a [[slice category|slice]] $\mathcal{C}/X$ is cartesian closed precisely if [[pullback]] along all morphisms $f : Y \to X$ with codomain $X$ preserves [[colimits]] (see at \emph{[[locally cartesian closed category]]} the section \emph{\href{locally%20cartesian%20closed%20category#EquivalentCharacterizations}{Cartesian closure in terms of base change and dependent product}}). \end{remark} \begin{example} \label{}\hypertarget{}{} Without the restriction that the codomain of $f$ in the above is a [[globe]], the pullback $f^*$ in $Str n Cat$ will in general fail to preserves colimits. For a simple example of this, consider the [[pushout]] diagram in [[Cat]] $\hookrightarrow Cat_{(\infty,1)}$ given by \begin{displaymath} \itexarray{ \Delta[0] &\stackrel{\delta_1}{\to}& \Delta[1] \\ {}^{\mathllap{\delta_0}}\downarrow && \downarrow^{\mathrlap{\delta_0}} \\ \Delta[1] &\stackrel{\delta_2}{\to}& \Delta[2] } \,. \end{displaymath} Notice that this is indeed also a [[homotopy pushout]]/[[(∞,1)-pushout]] since, by remark \ref{GauntIs0Truncted}, all objects involved are 0-truncated. Regard this canonically as a pushout diagram in the [[slice category]] $Cat_{/\Delta[2]}$ and consider then the pullback $\delta_1^* : Cat_{/\Delta[1]} \to Cat_{/\Delta[1]}$ along the remaining face $\delta_1 : \Delta[1] \to \Delta[2]$. This yields the diagram \begin{displaymath} \itexarray{ \emptyset &\stackrel{}{\to}& \emptyset \\ {}^{}\downarrow && \downarrow^{} \\ \emptyset &\stackrel{}{\to}& \Delta[1] } \,, \end{displaymath} which evidently no longer is a pushout. \end{example} (See also the discussion \href{http://golem.ph.utexas.edu/category/2011/11/the_1category_of_ncategories.html#c040335}{here}). \begin{defn} \label{nCatGen}\hypertarget{nCatGen}{} Write \begin{displaymath} Str n Cat_{gen} \hookrightarrow Str n Cat_{gaunt} \end{displaymath} for the smallest [[full subcategory]] that \begin{enumerate}% \item contains the [[globe category]] $\mathbb{G}_{\leq n}$, example \ref{Globes}; \item is closed under [[retracts]] in $Str n Cat_{gaunt}$; \item has all [[fiber products]] over [[globes]] (equivalently: such that all [[slice categories]] over globes have [[products]]). \end{enumerate} \end{defn} (\hyperlink{BarwickSchommerPries}{B-SP, def. 5.6}) \begin{example} \label{}\hypertarget{}{} The following categories are naturally [[full subcategories]] of $Str n Cat_{gen}$ \begin{itemize}% \item the $n$-fold [[simplex category]] $\Delta^{\times n}$; \item the $n$th [[Theta-category]]. \end{itemize} \end{example} This is discussed in more detail in [[(infinity,n)-category]] in \emph{\href{(infinity,n}{Presentation by Theta-spaces and by n-fold Segal spaces}-category\#PresentationByThetaSpaces)}. \begin{defn} \label{FundamentalPushouts}\hypertarget{FundamentalPushouts}{} The following [[pushouts]] in $Str n Cat$ we call the \textbf{fundamental pushouts} \begin{enumerate}% \item Gluing two $k$-[[globes]] along their [[boundary]] gives the boundary of the $(k+1)$-globle \begin{displaymath} G_k \coprod_{\partial C_{k-1}} G_k \simeq \partial G_{k+1} \end{displaymath} \item Gluing two $k$-globes along an $i$-face gives a [[pasting]] composition of the two globles \begin{displaymath} G_k \coprod_{G_i} G_k \end{displaymath} \item The [[fiber product]] of globes along non-degenerate morphisms $G_{i+j} \to G_i$ and $G_{i+k} \to G_i$ is built from gluing of globes by \begin{displaymath} G_{i+j} \times_{G_i} G_{i+k} \simeq (G_{i+j} \coprod_{G_i} G_{i+k}) \coprod_{\sigma^{i+1}(G_{j-1} \times G_{k-1})} (G_{i+k} \coprod_{G_i} G_{i+j}) \end{displaymath} \item The [[interval groupoid]] $(a \stackrel{\simeq}{\to} b)$ is obtained by forcing in $\Delta[3]$ the morphisms $(0\to 2)$ and $(1 \to 3)$ to be identities and it is equivalent, as an $n$-category, to the 0-globe $\Delta[3] \coprod_{\{0,2\} \coprod \{1,3\}} (\Delta[0] \coprod \Delta[0]) \stackrel{\sim}{\to} G_0$ and the analog is true for all suspensions of this relation \begin{displaymath} \sigma^k(\Delta[3]) \coprod_{\sigma^k\{0,2\} \coprod \sigma^k\{1,3\}} (G_k\coprod G_k) \stackrel{\sim}{\to} G_k \,. \end{displaymath} \end{enumerate} We say a functor $i$ on $Str n Cat$ \emph{preserves} the fundamental pushouts if it preserves the first three classes of pushouts, and if for the last one the morphism $i(\sigma^k(\Delta[3])) \coprod_{i(\sigma^k\{0,2\}) \coprod i(\sigma^k\{1,3\})} (i(G_k \coprod G_k)) \to i(G_k)$ is an equivalence. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} A strict 1-category is just a [[category]]. [[strict 2-category|Strict 2-categories]] are important, because the [[coherence theorem for bicategories]] states that every (``weak'') [[2-category]] is [[equivalence of categories|equivalent]] to a strict one, and also because many 2-categories, such as [[Cat]], are naturally strict. However, for $n\ge 3$, these two properties fail, so that strict $n$-categories become less useful (though not useless). Instead, one needs to use (at least) [[semistrict categories]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(∞,n)-category]] \item [[strict category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} With an eye towards the generalization to [[(∞,n)-categories]], strict $n$-categories are discussed in \begin{itemize}% \item [[Charles Rezk]], \emph{A cartesian presentation of weak n-categories} (\href{http://arxiv.org/abs/0901.3602}{arXiv:0901.3602}) \end{itemize} and in section 2 of \begin{itemize}% \item [[Clark Barwick]], [[Chris Schommer-Pries]], \emph{On the Unicity of the Homotopy Theory of Higher Categories} (\href{http://arxiv.org/abs/1112.0040}{pdf}, \href{http://prezi.com/w0ykkhh5mxak/the-uniqueness-of-the-homotopy-theory-of-higher-categories/}{unusual slides}) \end{itemize} [[!redirects strict n-categories]] [[!redirects strict infinity-category]] [[!redirects strict infinity-categories]] [[!redirects strict ∞-category]] [[!redirects strict ∞-categories]] \end{document}